163 research outputs found

    Development & Characterisation of Nanocomposites for Bone Tissue Engineering

    No full text
    The aim of this thesis was to develop a bioactive and resorbable nanoscale composite that mimics the properties of bone and will have the potential to regenerate bone. In conventional composites, the polymer phase can mask the bioactive phase and often degrades faster than the ceramic phase due to the weak interfacial bonding between the polymer and ceramic. Here in this thesis an organic/inorganic nanocomposite with stronger interfacial bonding between the two phases has been produced using the sol-gel route. Glasses containing SiO2 and CaO were used as the inorganic while the amino acid poly-Ī³āˆ’glutamic acid (Ī³āˆ’PGA) was used as the organic. This is the first time an inorganic/organic hybrid with enzymatically degradable polymer covalently crosslinked to the inorganic has been produced. Several factors contributed to the homogeneity of the nanocomposites; most important of all was the extent of integration (homogeneity and phase miscibility) of the organic into the inorganic sol. The main focus of this thesis was to synthesise this new material and to develop an understanding of the nanoscale interactions of the two phases. The chemical structure of the nanocomposites were characterised with Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) and the nanostructure was characterised with scanning and transmission electron microscopy (SEM and TEM). Bioactivity studies of the nanocomposites in simulated body fluid (SBF) showed that the nanocomposites containing calcium were bioactive. Initial in vitro cell response studies also showed that the nanocomposites were not toxic to cells. Nanocomposites were also foamed to create the first porous bioactive inorganic/organic scaffolds with covalent bonding between the organic and inorganic. Micro-computed tomography (Ī¼CT) was used to non-destructively image and quantify the internal pore structure of the bioactive nanocomposite scaffolds. The three-dimensional images of the scaffolds show that the nanocomposites have large macropores with multiple connections between them giving a suitable pore structure for tissue engineering

    Bioactivity in silica/poly(Ī³-glutamic acid) solā€“gel hybrids through calcium chelation

    Get PDF
    Bioactive glasses and inorganic/organic hybrids have great potential as biomedical implant materials. Solā€“gel hybrids with interpenetrating networks of silica and biodegradable polymers can combine the bioactive properties of a glass with the toughness of a polymer. However, traditional calcium sources such as calcium nitrate and calcium chloride are unsuitable for hybrids. In this study calcium was incorporated by chelation to the polymer component. The calcium salt form of poly(Ī³-glutamic acid) (Ī³CaPGA) was synthesized for use as both a calcium source and as the biodegradable toughening component of the hybrids. Hybrids of 40 wt.% Ī³CaPGA were successfully formed and had fine scale integration of Ca and Si ions, according to secondary ion mass spectrometry imaging, indicating a homogeneous distribution of organic and inorganic components. 29Si magic angle spinning nuclear magnetic resonance data demonstrated that the network connectivity was unaltered with changing polymer molecular weight, as there was no perturbation to the overall Si speciation and silica network formation. Upon immersion in simulated body fluid a hydroxycarbonate apatite surface layer formed on the hybrids within 1 week. The polymer molecular weight (Mw 30ā€“120 kDa) affected the mechanical properties of the resulting hybrids, but all hybrids had large strains to failure, >26%, and compressive strengths, in excess of 300 MPa. The large strain to failure values showed that Ī³CaPGA hybrids exhibited non-brittle behaviour whilst also incorporating calcium. Thus calcium incorporation by chelation to the polymer component is justified as a novel approach in hybrids for biomedical materials

    In situ 4D tomography image analysis framework to follow sintering within 3D-printed glass scaffolds

    Get PDF
    We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and interstrut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scale

    High-Density Protein Loading on Hierarchically Porous LDH-Aluminum Hydroxide Composites with a Rational Mesostructure

    Get PDF
    Hierarchically porous biocompatible Mg-Al-Cl type LDH composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high molecular weight protein adsorptions. A linear relationship between effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA) is established following successful control of the structure of the LDH-Alhy composite. The threshold of mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibits extremely high capacity for protein loading (996 mg/g) due to a large mean mesopore diameter (> 30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO42āˆ’ and Clāˆ’ aq.). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantity of proteins was clearly demonstrated, which potential uses in separation and purification in addition to a high-capacity storage medium.The present work is supported by JSPS-MAE SAKURA program (NĀ°34148TB).The present work is partially supported by JSPS KAKENHI, and by a research grant from the Foundation for the Promotion of Ion Engineering

    Detection and tracking volumes of interest in 3D printed tissue engineering scaffolds using 4D imaging modalities.

    Get PDF
    Additive manufacturing (AM) platforms allow the production of patient tissue engineering scaffolds with desirable architectures. Although AM platforms offer exceptional control on architecture, post-processing methods such as sintering and freeze-drying often deform the printed scaffold structure. In-situ 4D imaging can be used to analyze changes that occur during post-processing. Visualization and analysis of changes in selected volumes of interests (VOIs) over time are essential to understand the underlining mechanisms of scaffold deformations. Yet, automated detection and tracking of VOIs in the 3D printed scaffold over time using 4D image data is currently an unsolved image processing task. This paper proposes a new image processing technique to segment, detect and track volumes of interest in 3D printed tissue engineering scaffolds. The method is validated using a 4D synchrotron sourced microCT image data captured during the sintering of bioactive glass scaffolds in-situ. The proposed method will contribute to the development of scaffolds with controllable designs and optimum properties for the development of patient-specific scaffolds

    Electrospinning 3D bioactive glasses for wound healing

    Get PDF
    An electrospinning technique was used to produce three-dimensional (3D) bioactive glass fibrous scaffolds, in the SiO2-CaO system, for wound healing applications. Previously, it was thought that 3D cotton wool-like structures could only be produced when the sol contained calcium nitrate, implying that the Ca2+ and its electronic charge had a significant effect on the structure produced. Here, fibres with a 3D appearance were also electrospun from compositions containing only silica. A polymer binding agent was added to inorganic sol-gel solutions, enabling electrospinning prior to bioactive glass network formation and the polymer was removed by calcination. While the addition of Ca2+ contributes to the 3D morphology, here we show that other factors, such as relative humidity, play an important role in producing the 3D cotton-wool-like macrostructure of the fibres. A human dermal fibroblast cell line (CD-18CO) was exposed to dissolution products of the samples. Cell proliferation and metabolic activity tests were carried out and a VEGF ELISA showed a significant increase in VEGF production in cells exposed to the bioactive glass samples compared to control in DMEM. A novel SiO2-CaO nanofibrous scaffold was created that showed tailorable physical and dissolution properties, the control and composition of these release products are important for directing desirable wound healing interactions

    Four-dimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-ray tomography

    Get PDF
    BioglassĀ® was the first material to form a stable chemical bond with human tissue. Since its discovery, a key goal was to produce three-dimensional (3D) porous scaffolds which can host and guide tissue repair, in particular, regeneration of long bone defects resulting from trauma or disease. Producing 3D scaffolds from bioactive glasses is challenging because of crystallization events that occur while the glass particles densify at high temperatures. Bioactive glasses such as the 13ā€“93 composition can be sintered by viscous flow sintering at temperatures above the glass transition onset (T_{g}) and below the crystallization temperature (T_{c}). There is, however, very little literature on viscous flow sintering of bioactive glasses, and none of which focuses on the viscous flow sintering of glass scaffolds in four dimensions (4D) (3D + time). Here, high-resolution synchrotron-sourced X-ray computed tomography (sCT) was used to capture and quantify viscous flow sintering of an additively manufactured bioactive glass scaffold in 4D. In situ sCT allowed the simultaneous quantification of individual particle (local) structural changes and the scaffold's (global) dimensional changes during the sintering cycle. Densification, calculated as change in surface area, occurred in three distinct stages, confirming classical sintering theory. Importantly, our observations show for the first time that the local and global contributions to densification are significantly different at each of these stages: local sintering dominates stages 1 and 2, while global sintering is more prevalent in stage 3. During stage 1, small particles coalesced to larger particles because of their higher driving force for viscous flow at lower temperatures, while large angular particles became less faceted (angular regions had a local small radius of curvature). A transition in the rate of sintering was then observed in which significant viscous flow occurred, resulting in large reduction of surface area, total strut volume, and interparticle porosity because the majority of the printed particles coalesced to become continuous struts (stage 2). Transition from stage 2 to stage 3 was distinctly obvious when interparticle pores became isolated and closed, while the sintering rate significantly reduced. During stage 3, at the local scale, isolated pores either became more spherical or reduced in size and disappeared depending on their initial morphology. During stage 3, sintering of the scaffolds continued at the strut level, with interstrut porosity reducing, while globally the strut diameter increased in size, suggesting overall shrinkage of the scaffold with the flow of material via the strut contacts. This study provides novel insights into viscous flow in a complex non-idealized construct, where, locally, particles are not spherical and are of a range of sizes, leading to a random distribution of interparticle porosity, while globally, predesigned porosity between the struts exists to allow the construct to support tissue growth. This is the first time that the three stages of densification have been captured at the local and global scales simultaneously. The insights provided here should accelerate the development of 3D bioactive glass scaffolds
    • ā€¦
    corecore