829 research outputs found

    Brief Report: Which Came First? Exploring Crossmodal Temporal Order Judgements and Their Relationship with Sensory Reactivity in Autism and Neurotypicals

    Get PDF
    Previous studies have indicated that visual-auditory temporal acuity is reduced in children with autism spectrum conditions (ASC) in comparison to neurotypicals. In the present study we investigated temporal acuity for all possible bimodal pairings of visual, tactile and auditory information in adults with ASC (n = 18) and a matched control group (n = 18). No group differences in temporal acuity for crossmodal stimuli were observed, suggesting that this may be typical in adults with ASC. However, visual-tactile temporal acuity and bias towards vision when presented with visual-auditory information were both predictors of self-reported sensory reactivity. This suggests that reduced multisensory temporal acuity and/or attention towards vision may contribute to atypical sensory reactivity

    Growing human-scale scala tympani-like in vitro cell constructs

    Full text link
    Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development of in vitro models that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing

    An annotated list of the Lepidoptera of Honduras

    Get PDF
    A biodiversity inventory of the Lepidoptera of Pico Bonito National Park and vicinity, in the Department of Atlantida of northern Honduras, was initiated in 2009 to obtain baseline data. We present a revised checklist of Honduran butterfly species (updated from the initial 1967 lists), as well as the first comprehensive list of Honduran moths. Our updated list includes 550 species of Papilionoidea, 311 Hesperioidea, and 1,441 moth species

    An annotated list of the Lepidoptera of Honduras

    Get PDF
    A biodiversity inventory of the Lepidoptera of Pico Bonito National Park and vicinity, in the Department of Atlantida of northern Honduras, was initiated in 2009 to obtain baseline data. We present a revised checklist of Honduran butterfly species (updated from the initial 1967 lists), as well as the first comprehensive list of Honduran moths. Our updated list includes 550 species of Papilionoidea, 311 Hesperioidea, and 1,441 moth species

    Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms

    Get PDF
    Six diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5′ and 3′ of the stop codon. A preferred core signal of 4 nt was evident, encompassing the stop codon and the following nucleotide. Codons decoded by hyper-modified tRNAs were over-represented in the region 5′ to the stop codon in genes from both kingdoms. The origin of the 3′ bias was more variable particularly among the prokaryotic organisms. In both kingdoms, genes with the highest expression index exhibited a strong bias but genes with the lowest expression showed none. Absence of bias in parasitic prokaryotes may reflect an absence of pressure to evolve more efficient translation. Experiments were undertaken to determine if a correlation existed between bias in signal abundance and termination efficiency. In Escherichia coli signal abundance correlated with termination efficiency for UAA and UGA stop codons, but not in mammalian cells. Termination signals that were highly inefficient could be made more efficient by increasing the concentration of the cognate decoding release factor

    Improving Deep Brain Stimulation Electrode Performance in vivo Through Use of Conductive Hydrogel Coatings

    Get PDF
    Active implantable neurological devices like deep brain stimulators have been used over the past few decades to treat movement disorders such as those in people with Parkinson’s disease and more recently, in psychiatric conditions like obsessive compulsive disorder. Electrode-tissue interfaces that support safe and effective targeting of specific brain regions are critical to success of these devices. Development of directional electrodes that activate smaller volumes of brain tissue requires electrodes to operate safely with higher charge densities. Coatings such as conductive hydrogels (CHs) provide lower impedances and higher charge injection limits (CILs) than standard platinum electrodes and support safer application of smaller electrode sizes. The aim of this study was to examine the chronic in vivo performance of a new low swelling CH coating that supports higher safe charge densities than traditional platinum electrodes. A range of hydrogel blends were engineered and their swelling and electrical performance compared. Electrochemical performance and stability of high and low swelling formulations were compared during insertion into a model brain in vitro and the formulation with lower swelling characteristics was chosen for the in vivo study. CH-coated or uncoated Pt electrode arrays were implanted into the brains of 14 rats, and their electrochemical performance was tested weekly for 8 weeks. Tissue response and neural survival was assessed histologically following electrode array removal. CH coating resulted in significantly lower voltage transient impedance, higher CIL, lower electrochemical impedance spectroscopy, and higher charge storage capacity compared to uncoated Pt electrodes in vivo, and this advantage was maintained over the 8-week implantation. There was no significant difference in evoked potential thresholds, signal-to-noise ratio, tissue response or neural survival between CH-coated and uncoated Pt groups. The significant electrochemical advantage and stability of CH coating in the brain supports the suitability of this coating technology for future development of smaller, higher fidelity electrode arrays with higher charge density requirement

    Can Young Adults Accurately Report Sexual Partnership Dates? Factors Associated With Interpartner and Dyad Agreement

    Get PDF
    Sexual partnership dates are critical to STI/HIV research and control programs, though validity is limited by inaccurate recall and reporting
    • …
    corecore