121 research outputs found

    Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas!

    Get PDF
    We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents

    CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era

    Get PDF
    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells

    Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli

    Get PDF
    Cytochrome bd-I is one of the three proton motive force-generating quinol oxidases in the O2-dependent respiratory chain of Escherichia coli. It contains one low-spin haem (b558) and the two high-spin haems (b595 and d) as the redox-active cofactors. In order to examine the flash-induced intraprotein reverse electron transfer (the so-called ''electron backflow''), CO was photolyzed from the ferrous haem d in one-electron reduced (b558 3+b595 3+d2+-CO) cytochrome bd-I, and the fully reduced (b5582+b5952+d2+-CO) oxidase as a control. In contrast to the fully reduced cytochrome bd-I, the transient spectrum of one-electron reduced oxidase at a delay time of 1.5 μs is clearly different from that at a delay time of 200 ns. The difference between the two spectra can be modeled as the electron transfer from haem d to haem b595 in 3–4% of the cytochrome bd-I population. Thus, the interhaem electron backflow reaction induced by photodissociation of CO from haem d in one-electron reduced cytochrome bd-I comprises two kinetically different phases: the previously unnoticed fast electron transfer from haem d to haem b595 within 0.2–1.5 μs and the slower well-defined electron equilibration with τ ~16 μs. The major new finding of this work is the lack of electron transfer at 200 ns

    Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria?

    Get PDF
    A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term 'small molecule signalling agent', as proposed by Fukuto and others, is preferable terminology

    Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria

    Get PDF
    Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads

    Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators

    Get PDF
    Carbon monoxide, a classical respiratory inhibitor, also exerts vasodilatory, anti-inflammatory, and antiapoptotic effects. CO-releasing molecules have therapeutic value, increasing phagocytosis and reducing sepsis-induced lethality. Here we identify for the first time the bacterial targets of Ru(CO)(3)Cl(glycinate) (CORM-3), a ruthenium-based carbonyl that liberates CO rapidly under physiological conditions. Contrary to the expectation that CO would be preferentially inhibitory at low oxygen tensions or anaerobically, Escherichia coli cultures were also sensitive to CORM-3 at concentrations equimolar with oxygen. CORM-3, assayed as ruthenium, was taken up by bacteria and rapidly delivered CO intracellularly to terminal oxidases. Microarray analysis of CORM-3-treated cells revealed extensively modified gene expression, notably down-regulation of genes encoding key aerobic respiratory complexes. Genes involved in metal metabolism, homeostasis, or transport were also differentially expressed, and free intracellular zinc levels were elevated. Probabilistic modeling of transcriptomic data identified the global transcription regulators ArcA, CRP, Fis, FNR, Fur, BaeR, CpxR, and IHF as targets and potential CO sensors. Our discovery that CORM-3 is an effective inhibitor and global regulator of gene expression, especially under aerobic conditions, has important implications for administration of CO-releasing agents in sepsis and inflammatio

    A microbubble-sparged yeast propagation–fermentation process for bioethanol production

    Get PDF
    Background Industrial biotechnology will play an increasing role in creating a more sustainable global economy. For conventional aerobic bioprocesses supplying O2 can account for 15% of total production costs. Microbubbles (MBs) are micron-sized bubbles that are widely used in industry and medical imaging. Using a fluidic oscillator to generate energy-efficient MBs has the potential to decrease the costs associated with aeration. However, little is understood about the effect of MBs on microbial physiology. To address this gap, a laboratory-scale MB-based Saccharomyces cerevisiae Ethanol Red propagation–fermentation bioethanol process was developed and analysed. Results Aeration with MBs increased O2 transfer to the propagation cultures. Titres and yields of bioethanol in subsequent anaerobic fermentations were comparable for MB-propagated and conventional, regular bubble (RB)-propagated yeast. However, transcript profiling showed significant changes in gene expression in the MB-propagated yeast compared to those propagated using RB. These changes included up-regulation of genes required for ergosterol biosynthesis. Ergosterol contributes to ethanol tolerance, and so the performance of MB-propagated yeast in fed-batch fermentations sparged with 1% O2 as either RBs or MBs were tested. The MB-sparged yeast retained higher levels of ergosteryl esters during the fermentation phase, but this did not result in enhanced viability or ethanol production compared to ungassed or RB-sparged fermentations. Conclusions The performance of yeast propagated using energy-efficient MB technology in bioethanol fermentations is comparable to that of those propagated conventionally. This should underpin the future development of MB-based commercial yeast propagation

    Meta-Analysis and Sparse-Data Bias

    Get PDF
    Meta-analyses are undertaken to combine information from a set of studies, often in settings where some of the individual study-specific estimates are based on relatively small study samples. Finite sample bias may occur when maximum likelihood estimates of associations are obtained by fitting logistic regression models to sparse data sets. Here we show that combining information from small studies by undertaking a meta-analytical summary of logistic regression estimates can propagate such sparse-data bias. In simulations, we illustrate 2 challenges encountered in meta-analyses of logistic regression results in settings of sparse data: 1) bias in the summary meta-analytical result and 2) confidence interval coverage that can worsen rather than improve, in terms of being less than nominal, as the number of studies in the meta-analysis increases

    Bacterial oxidases of the cytochrome bd family : redox enzymes of unique structure, function, and utility as drug targets

    Get PDF
    Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents

    CORM-3 induces DNA damage through Ru(II) binding to DNA

    Get PDF
    When the ‘CO-releasing molecule-3’, CORM-3 (Ru(CO)3Cl(glycinate)), is dissolved in water it forms a range of ruthenium complexes. These are taken up by cells and bind to intracellular ligands, notably thiols such as cysteine and glutathione, where the Ru(II) reaches high intracellular concentrations. Here, we show that the Ru(II) ion also binds to DNA, at exposed guanosine N7 positions. It therefore has a similar cellular target to the anticancer drug cisplatin, but not identical, because Ru(II) shows no evidence of forming intramolecular crossbridges in the DNA. The reaction is slow, and with excess Ru, intermolecular DNA crossbridges are formed. The addition of CORM-3 to human colorectal cancer cells leads to strand breaks in the DNA, as assessed by the alkaline comet assay. DNA damage is inhibited by growth media containing amino acids, which bind to extracellular Ru and prevent its entry into cells. We conclude that the cytotoxicity of Ru(II) is different from that of platinum, making it a promising development target for cancer therapeutics
    corecore