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Meta-analyses are undertaken to combine information from a set of studies, often in settings where some of
the individual study-specific estimates are based on relatively small study samples. Finite sample bias may occur
when maximum likelihood estimates of associations are obtained by fitting logistic regression models to sparse
data sets. Here we show that combining information from small studies by undertaking a meta-analytical summary
of logistic regression estimates can propagate such sparse-data bias. In simulations, we illustrate 2 challenges
encountered in meta-analyses of logistic regression results in settings of sparse data: 1) bias in the summary
meta-analytical result and 2) confidence interval coverage that can worsen rather than improve, in terms of being
less than nominal, as the number of studies in the meta-analysis increases.

cohort studies; logistic regression; meta-analysis; regression analysis

Abbreviations: Cl, confidence interval; OR, odds ratio.

A meta-analysis of epidemiologic study results is under-
taken to combine information from a set of studies. Often
a motivation for conducting a meta-analysis is that some,
or all, of the individual study-specific estimates are based
on relatively few data. A meta-analytical approach involves
the aggregation of information to yield a summary effect
estimate that often has greater statistical precision than is
possible to obtain in any individual study. Meta-analytical
approaches to deriving a summary effect estimate typically
involve calculation of a weighted average of the effect esti-
mates from the individual studies (1).

However, finite sample bias may occur when epidemio-
logic estimates of associations are obtained by fitting logistic
regression models to sparse data (2). In this paper, we
show that undertaking a meta-analytical summary of logistic
regression estimates derived from sparse data can propagate
such bias. Consequently, a meta-analytical summarization
of logistic regression estimates may not yield a consistent
summary estimate that converges to the true association, and
the resultant confidence interval may not have the desired
nominal coverage.

Here, we describe the problem in the context of meta-
analysis of published results from multivariable logistic
regression models and illustrate it using simulations.

METHODS
Meta-analysis of logistic regression estimates

We focus on a setting where epidemiologic results have
been obtained from multivariable logistic regression models.
Subsequently, an investigator wishes to conduct a meta-
analysis based on published estimates of odds ratios and
associated confidence intervals derived by these logistic
regression model fittings. As is typical, the investigator
does not have the original, individual-level data for all of
the studies included in the meta-analysis. The parameter
of primary interest in the meta-analysis, f, denotes the
covariate-adjusted natural log of the odds ratio per unit
of exposure (noting that a unit change in exposure may
refer to settings in which the exposure variable is a binary,
ordinal, or continuous variable). The data structure available
for this summarization of epidemiologic findings is a table
of estimates of B and associated confidence intervals. Let
i =1 ... k index the k estimates to be summarized in
the meta-analysis. Let ; denote the estimate of the natural
log of the odds ratio per unit of exposure for study i; and
let L; and U; denote the associated lower and upper confi-
dence limits for B;. In standard meta-analytical techniques,
study-specific variance estimates are used to calculate the



inverse-variance—weighted average estimate of association,
which is reported as the summary estimate of association
(3). We address a summary meta-analytical estimate of the
association based on a common-effect model, often referred
to as a fixed-effect meta-analysis (1), and a summary meta-
analytical estimate of the association based on a random-
effects model (see Web Appendix 1, available at https://
academic.oup.com/aje).

Logistic regression estimates obtained using maximum
likelihood methods are known to be susceptible to finite
(or sparse) sample bias away from the null when data are
sparse (2—4). This bias tends to increase as the number
of covariates included in a multivariable regression model
increases, while the number of outcomes remains fixed; bias
may similarly arise with matched case-control study designs
as the number of strata defining matching factors increases
(4, 5). Given that meta-analytical approaches to deriving a
summary effect estimate involve calculation of a weighted
average of the results of the individual studies, if a study in
the meta-analysis suffers sparse-data bias, then this approach
to combining information will propagate that bias.

Simulation example

In simulation-based assessments, we allow that a meta-
analysis encompasses estimates of association derived from
multiple studies of the same exposure, outcome, and set of
covariates, obtained under the same logistic model form.
We simulated data under scenarios in which the number of
individuals per study was small (n = 200-300), moderate
(n = 300-500), or large (n = 500-750), the number of
studies per meta-analysis was 5, 10, or 15, and the number
of covariates was 5, 10, or 15. In each simulation, the
number of people in a study was drawn from a uniform
distribution over the specified range of study size; for each
cohort member, we generated independent standard normal
covariates Z. We generated a random binary exposure, E,
with dependence on covariates by specifying that E took a
value of 1 with probability TTexp=o g1(0.25) 7)) where ¢

was set to 0.20, 0.10, or 0. We generated a binary outcome,
Y, with dependence of Y on covariates Z and exposure E
encoded by spemfymg that Y took a value of 1 with prob-

ability TTexp(= (log(O DT eZrn)’ where ¢ was set to 0.20,

0.10, or 0 and ny was set to 1, 0.50, or 0.20. We estimated
the multivariable adjusted log odds ratio for each of the
studies included in each meta-analysis. We used maximum
likelihood to fit a logistic regression model for the outcome
that included the exposure, E, and covariates Z as indepen-
dent variables with no product terms for interaction between
covariates. For each scenario, 1,000 meta-analyses were
simulated; then, we calculated a summary meta-analytical
estimate of the association based on a common-effect model
approach (Web Appendix 1). To summarize the results, we
calculated the average estimate, the average of the squared
difference between the estimate and the simulation’s speci-
fied true value, 1, and the 95% confidence interval coverage
of the true value for each scenario.

We then repeated the set of simulations using a similar sim-
ulation approach, but we generated a binary outcome, Y, that

took a value of 1 with probability ETe (log(& EEZ=mNE
where 1, ~ N(u,0) with u =1, 0.50, or 0.20 and 0 = 1,
0.5, or 0.1. For each scenario, 1,000 meta-analyses were
simulated; then, we calculated a summary meta-analytical
estimate of the association based on a random-effects model
(Web Appendix 1).

RESULTS

Table | summarizes the simulation results for common-
effect meta-analyses in which the exposure-outcome associ-
ation, as quantified by the log odds per unit of exposure, was
1.0. The expected incidence of the outcome across the simu-
lation scenarios was 14%—16%, and the number of outcome
events was approximately 40, 60, and 95 when the number
of individuals per study was small (n = 200-300), moderate
(n = 300-500), and large (n = 500-750), respectively. The
meta-analytical results were approximately unbiased when
the number of individuals per study was large (n = 500-750)
and the number of covariates per regression model was small
(5). The degree of bias and the mean squared error tended
to increase as the study size decreased and as the number
of covariates included in the regression model increased.
The 95% confidence interval coverage tended to improve
(i.e., become closer to the nominal 95% value) as the study
size increased and as the number of covariates included in
the regression model decreased, while confidence interval
coverage tended to worsen (i.e., become less than nominal)
as the number of studies per meta-analysis increased and
as the number of covariates in the models increased. Web
Tables 1 and 2 show simulation results for common-effect
meta-analyses in which the exposure-outcome association,
as quantified by the log odds per unit of exposure, was
0.50 and 0.20, respectively (Web Appendix 2), with similar
patterns of bias and confidence interval coverage as those
observed in Table 1.

Table 2 summarizes the simulation results for a random-
effects meta-analysis in which the exposure-outcome associ-
ation, as quantified by the log odds per unit of exposure, was
normally distributed with a mean of 1.0. When the between-
study variance in the exposure effect was small (o = 0.1),
the simulation results of the random-effects meta-analysis
(Table 2) were very similar to those for the common-effect
meta-analysis (Table 1). When the between-study variance
in the exposure effect was larger (¢ = 0.5 or o = 1.0),
the degree of bias in the random-effects meta-analysis was
greater than in the common-effect meta-analysis. The con-
fidence interval coverage tended to improve (i.e., become
closer to the nominal 95% value) as the study size increased
and as the between-study variance in the exposure effect de-
creased. When the between-study variance in the exposure
effect was larger (o = 0.5 or o = 1.0), the confidence interval
coverage did not tend to worsen as the number of studies per
meta-analysis increased. Web Tables 3 and 4 show simula-
tion results for random-effects meta-analyses in which the
exposure-outcome association, as quantified by the log odds
per unit of exposure, was normally distributed with a mean
of 0.5 and 0.2, respectively (Web Appendix 2), with similar
patterns observed as those illustrated in Table 2.
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Table 1.

Simulated Results? for a Common-Effect Meta-Analysis in Which the Exposure-Outcome Association, as Quantified by the Log Odds
per Unit of Exposure, Is 1.0

s

Simulation Setup

Common-Effect Meta-Analysis

No. of Covariates No. of Studies No. of Subjects Mean 95% CI Mean
per Model per Meta-Analysis per Study Estimate Coverage, % Squared Error

1.0 15 15 500-750 1.04 90 0.007
300-500 1.07 88 0.012

200-300 1.1 84 0.025

1.0 15 10 500-750 1.04 91 0.009
300-500 1.07 91 0.016

200-300 1.1 89 0.031

1.0 15 5 500-750 1.04 93 0.015
300-500 1.06 93 0.027

200-300 1.10 91 0.053

1.0 10 15 500-750 1.03 94 0.005
300-500 1.04 91 0.010

200-300 1.08 89 0.019

1.0 10 10 500-750 1.03 94 0.007
300-500 1.05 94 0.014

200-300 1.08 91 0.025

1.0 10 5 500-750 1.03 94 0.015
300-500 1.05 93 0.025

200-300 1.08 93 0.044

1.0 5 15 500-750 1.02 94 0.005
300-500 1.03 94 0.008

200-300 1.04 93 0.015

1.0 5 10 500-750 1.02 96 0.006
300-500 1.03 95 0.011

200-300 1.04 95 0.019

1.0 5 5 500-750 1.02 94 0.013
300-500 1.03 96 0.020

200-300 1.04 95 0.034

Abbreviation: Cl, confidence interval.

2 Results for scenarios in which the covariate-exposure association, ¢, was set at 0.20 and the covariate-outcome association, ¢, was set

at 0.20.

Web Tables 5 and 6 illustrate results for common-effect
and random-effects meta-analyses, respectively, under sim-
ulation settings in which we varied the magnitudes of asso-
ciations between the covariates and exposure and between
the covariates and the outcome (Web Appendix 2). Holding
study size fixed, bias and confidence interval coverage were
similar across the range of settings examined for covariate-
exposure and covariate-outcome associations.

DISCUSSION

Meta-analyses of regression results are often undertaken
in the context of epidemiologic literature that may include
small studies that individually lead to relatively imprecise

estimates. A common-effect meta-analysis is an approach
used to combine information across studies and derive
a more precise summary estimate of association than is
obtained in any individual study. However, this meta-
analytical approach does not reduce the sparse-data bias
that may affect maximum likelihood estimates. Sparse-data
bias tends to arise when the number of outcome events
in an analysis is small; and holding the number of events
fixed, bias tends to increase as the number of covariates
included in a regression model increases. In our simulations,
common-effect meta-analytical results were biased away
from the null when sample sizes were small and the number
of model covariates was large; and as the number of
studies included in meta-analyses increased (holding other



Table 2. Simulated Results? for A Random-Effects Meta-Analysis in Which the Exposure-Outcome Association,
as Quantified by the Log Odds per Unit of Exposure, Is Normally Distributed With a Mean of 1.0

nr ~ N(p, o) Simulation Setup Random-Effects Meta-Analysis
" o No. of Studies per No. of Subjects Mean 95% ClI
Meta-Analysis per Study Estimate Coverage, %
1.0 0.1 15 500-750 1.04 92
0.5 1.05 92
1.0 1.07 92
1.0 0.1 15 300-500 1.07 89
0.5 1.09 89
1.0 111 90
1.0 0.1 10 500-750 1.04 92
0.5 1.05 91
1.0 1.07 90
1.0 0.1 10 300-500 1.07 91
0.5 1.09 90
1.0 111 89
1.0 0.1 5 500-750 1.05 93
0.5 1.05 89
1.0 1.06 89
1.0 0.1 5 300-500 1.07 92
0.5 1.10 87
1.0 1.13 86

Abbreviation: Cl, confidence interval.

@ Results for scenarios with 15 covariates per regression model in which the covariate-exposure association, ¢,
was set at 0.20 and the covariate-outcome association, ¢, was set at 0.20.

simulation parameters unchanged), the confidence interval
coverage for the meta-analytical summary worsened. This
is probably because confidence intervals for meta-analytical
summary estimates become tighter as the number of studies
in a meta-analysis increases while the bias remains (6).

Similarly, in our simulations, random-effects meta-
analytical summaries were biased away from the null when
sample sizes were small; we further noted that bias tended
to be larger for random-effects meta-analyses than for
common-effect meta-analyses and tended to increase as
the between-study variance in the exposure effect increased.
In part, this may be because smaller studies have rela-
tively larger weights in the summary effect estimate in a
random-effects meta-analysis than in a common-effect
meta-analysis. The simulations illustrate simple scenarios
of meta-analyses of logistic regression model parameter
estimates derived under conditions of correct model
specification. Sparse-data bias also could affect conclusions
regarding homogeneity of estimates included in a meta-
analysis—a problem not addressed in our current analyses
but a potentially useful topic for future work.

Sparse-data bias affects logistic regression models (7)
as well as Poisson and Cox regression models (2). The
potential for sparse-data bias within studies to propagate

through meta-analyses adds another limitation to the use
of logistic regression methods; other issues that have been
raised with odds ratios relate to problems of interpretation,
collapsibility, valid estimation, and transportability relative
to more substantively meaningful measures such as risk and
prevalence differences and ratios (8—10). We focused on the
setting in which a meta-analysis of aggregate data is under-
taken (summary estimates of odds ratios and associated
confidence intervals) derived from multiple studies that are
conceptually identical, involving not only the same exposure
and outcome variables but also the same covariates, modeled
under the same logistic form. In practice, meta-analyses
often diverge from these conditions, and some estimates
may be derived from models with covariate-adjustment sets
that may differ between studies. Given the noncollapsibility
of the odds ratio (meaning that the covariate-conditional
odds ratio may differ from the crude odds ratio even in the
absence of confounding), meta-analysts should be cautious
in these settings, as the meta-analysis will combine estimates
from studies that estimated different (covariate-conditional)
effects. Meta-analyses of summary estimates of risk ratios,
a collapsible measure of association, do not suffer from
this problem; however, susceptibility to sparse-data bias is
a concern for estimates of risk ratios, as it is for odds ratios



(2, 6), and problems with model convergence are commonly
encountered when estimating risk ratios in multivariable
binomial regression models (although several approaches
for addressing such problems have been described (11-14)).

A meta-analytical approach may be desirable for summa-
rizing a result derived from the regression model estimates
obtained from each individual study. Our findings suggest
that consideration of potential sparse-data bias is warranted.
A variety of methods have been proposed for reducing
sparse-data bias in regression estimates for individual stud-
ies (15, 16); and approaches such as Firth’s correction, which
is one method for penalization as an approach to dealing with
sparse-data bias (2), can make regression estimates more
resistant to sparse-data bias (16). Of course, in the setting of
primary interest, where access to the individual-level study
data is not feasible and the aggregate data are covariate-
conditional logistic regression estimates of log odds ratios,
such corrections are useful only if they were employed by
the investigators who reported the study-specific regression
model estimates being meta-analyzed. However, the litera-
ture suggests that such bias is often unaccounted for in the
published literature (2). A useful guideline, albeit one with
limitations (17), for assessment of potential sparse-data bias
in the individual studies included in a meta-analysis is that
sparse-data bias typically is minimal in regression analyses
that include at least 10 events per variable in the model
(18). Consistent with that guideline, in our simulations there
was little evidence of sparse-data bias propagating in meta-
analyses of logistic regression results for scenarios where
the expected number of events per study was approximately
10 times the number of variables in the regression model
(e.g., simulation scenarios with 5 covariates and 300 or more
subjects per study (Table 1)).

When undertaking meta-analyses of epidemiologic find-
ings derived from models susceptible to sparse-data bias, we
suggest the need for caution and attention to sparse-data bias
and less-than-nominal confidence interval coverage in the
resultant meta-analytical summary result.
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