847 research outputs found

    Membrane protein biogenesis at the ER: the highways and byways

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-02-18, rev-recd 2021-04-19, accepted 2021-04-28, pub-electronic 2021-06-05Article version: VoRPublication status: PublishedFunder: Biochemical Society; Id: http://dx.doi.org/10.13039/501100000373Funder: Wellcome Trust; Grant(s): 204957/Z/16/ZThe Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61‐mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co‐translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co‐translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post‐insertion events, where at least one membrane‐embedded chaperone complex can capture the newly inserted transmembrane domains of multi‐span proteins and co‐ordinate their assembly into a native structure. Having discovered this array of Sec61‐associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER

    A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase

    Get PDF
    Membrane protein integration occurs predominantly at the endoplasmic reticulum and is mediated by the translocon, which is formed by the Sec61p complex. The translocon binds to the ribosome at the polypeptide exit site such that integration occurs in a cotranslational manner. Ribosomal protein Rpl17 is positioned such that it contacts both the ribosome exit tunnel and the surface of the ribosome near the exit site, where it is intimately associated with the translocon. The presence of a trans-membrane (TM) segment inside the ribosomal exit tunnel leads to the recruitment of RAMP4 to the translocon at a site adjacent to Rpl17. This suggests a signaling function for Rpl17 such that it can recognize a TM segment inside the ribosome and triggers rearrangements of the translocon, priming it for subsequent TM segment integration

    Predictors of linkage to care following community-based HIV counseling and testing in rural Kenya

    Get PDF
    Despite innovations in HIV counseling and testing (HCT), important gaps remain in understanding linkage to care. We followed a cohort diagnosed with HIV through a community-based HCT campaign that trained persons living with HIV/AIDS (PLHA) as navigators. Individual, interpersonal, and institutional predictors of linkage were assessed using survival analysis of self-reported time to enrollment. Of 483 persons consenting to follow-up, 305 (63.2%) enrolled in HIV care within 3 months. Proportions linking to care were similar across sexes, barring a sub-sample of men aged 18–25 years who were highly unlikely to enroll. Men were more likely to enroll if they had disclosed to their spouse, and women if they had disclosed to family. Women who anticipated violence or relationship breakup were less likely to link to care. Enrolment rates were significantly higher among participants receiving a PLHA visit, suggesting that a navigator approach may improve linkage from community-based HCT campaigns.Vestergaard Frandse

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • 

    corecore