23 research outputs found

    Interaction between Plasmodium glycosylphosphatidylinositol and the host protein moesin has no implication in malaria pathology

    Get PDF
    Glycosylphosphatidylinositol (GPI) anchor of Plasmodium falciparum origin is considered an important toxin leading to severe malaria pathology through stimulation of pro-inflammatory responses from innate immune cells. Even though the GPI-induced immune response is widely described to be mediated by pattern recognition receptors such as TLR2 and TLR4, previous studies have revealed that these two receptors are dispensable for the development of severe malaria pathology. Therefore, this study aimed at the identification of potential alternative Plasmodium GPI receptors. Herein, we have identified the host protein moesin as an interaction partner of Plasmodium GPI in vitro. Given previous reports indicating the relevance of moesin especially in the LPS-mediated induction of pro-inflammatory responses, we have conducted a series of in vitro and in vivo experiments to address the physiological relevance of the moesin-Plasmodium GPI interaction in the context of malaria pathology. We report here that although moesin and Plasmodium GPI interact in vitro, moesin is not critically involved in processes leading to Plasmodium- induced pro-inflammatory immune responses or malaria-associated cerebral pathology

    Treatment of organic pollutants from pulp mill wastewaters using Fenton's oxidation process.

    No full text

    Bleb Formation in Human Fibrosarcoma HT1080 Cancer Cell Line Is Positively Regulated by the Lipid Signalling Phospholipase D2 (PLD2)

    No full text
    Blebs are spherical plasma membrane protrusions formed when the membrane detaches from the underlying cortex as a result of actomyosin contractility-powered increase of hydrostatic pressure in the cytoplasm. Different tumour cells metastasize using blebbing as alternative mode of migration by squeezing through pre-existing pores in the extracellular matrix (ECM). This study investigated the role of the lipid signalling phospholipases D1 and D2 (PLD1/PLD2) in bleb formation in human fibrosarcoma HT1080 cell line in the extracellular matrix, and reports that pharmacological inhibition of PLD1 and PLD2 with a potent universal PLD inhibitor potently inhibited bleb formation in HT1080 cells embedded in three-dimensional (3D) matrigel matrix. Use of smartpool small interfering RNAs (siRNAs) that target PLD1 and PLD2 isoforms at four different sequences revealed that PLD2, but not PLD1 is involved in blebbing of HT1080 cells. Furthermore, we demonstrate that PLD2-mediated bleb formation is via the PA-LPAR-Rho-ROCK signalling pathway. Thus, PLD2 is a promising therapeutic target in combating metastasis of cancers of fibrous connective tissues

    Bleb Formation in Human Fibrosarcoma HT1080 Cancer Cell Line Is Positively Regulated by the Lipid Signalling Phospholipase D2 (PLD2)

    Get PDF
    AbstractBlebs are spherical plasma membrane protrusions formed when the membrane detaches from the underlying cortex as a result of actomyosin contractility-powered increase of hydrostatic pressure in the cytoplasm. Different tumour cells metastasize using blebbing as alternative mode of migration by squeezing through pre-existing pores in the extracellular matrix (ECM). This study investigated the role of the lipid signalling phospholipases D1 and D2 (PLD1/PLD2) in bleb formation in human fibrosarcoma HT1080 cell line in the extracellular matrix, and reports that pharmacological inhibition of PLD1 and PLD2 with a potent universal PLD inhibitor potently inhibited bleb formation in HT1080 cells embedded in three-dimensional (3D) matrigel matrix. Use of smartpool small interfering RNAs (siRNAs) that target PLD1 and PLD2 isoforms at four different sequences revealed that PLD2, but not PLD1 is involved in blebbing of HT1080 cells. Furthermore, we demonstrate that PLD2-mediated bleb formation is via the PA-LPAR-Rho-ROCK signalling pathway. Thus, PLD2 is a promising therapeutic target in combating metastasis of cancers of fibrous connective tissues

    CAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity

    No full text
    cAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP]i in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2?/?) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP]i can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer.</p

    cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity

    Get PDF
    AbstractcAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP]i in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2−/−) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP]i can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer
    corecore