58 research outputs found

    Silver doping of silica-hafnia waveguides containing Tb3+/Yb3+ rare earths for downconversion in PV solar cells

    Get PDF
    The aim of this paper is to study the possibility to obtain an efficient downconverting waveguide which combines the quantum cutting properties of Tb3+/Yb3+ codoped materials with the optical sensitizing effects provided by silver doping. The preparation of 70SiO(2)-30HfO(2) glass and glass-ceramic waveguides by sol-gel route, followed by Ag doping by immersion in molten salt bath is reported. The films were subsequently annealed in air to induce the migration and/or aggregation of the metal ions. Results of compositional and optical characterization are given, providing evidence for the successful introduction of Ag in the films, while the photoluminescence emission is strongly dependent on the annealing conditions. These films could find potential applications as downshifting layers to increase the efficiency of PV solar cells. (C) 2016 Elsevier B.V. All rights reserved

    PPARÎł contributes to PKM2 and HK2 expression in fatty liver

    Get PDF
    Rapidly proliferating cells promote glycolysis in aerobic conditions, to increase growth rate. Expression of specific glycolytic enzymes, namely pyruvate kinase M2 and hexokinase 2, concurs to this metabolic adaptation, as their kinetics and intracellular localization favour biosynthetic processes required for cell proliferation. Intracellular factors regulating their selective expression remain largely unknown. Here we show that the peroxisome proliferator-activated receptor gamma transcription factor and nuclear hormone receptor contributes to selective pyruvate kinase M2 and hexokinase 2 gene expression in PTEN-null fatty liver. Peroxisome proliferator-activated receptor gamma expression, liver steatosis, shift to aerobic glycolysis and tumorigenesis are under the control of the Akt2 kinase in PTEN-null mouse livers. Peroxisome proliferator-activated receptor gamma binds to hexokinase 2 and pyruvate kinase M promoters to activate transcription. In vivo rescue of peroxisome proliferator-activated receptor gamma activity causes liver steatosis, hypertrophy and hyperplasia. Our data suggest that therapies with the insulin-sensitizing agents and peroxisome proliferator-activated receptor gamma agonists, thiazolidinediones, may have opposite outcomes depending on the nutritional or genetic origins of liver steatosis

    Hepatic Stem-like Phenotype and Interplay of Wnt/β-Catenin and Myc Signaling in Aggressive Childhood Liver Cancer

    Get PDF
    SummaryHepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/β-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. β-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy

    FUNCTIONAL-ANALYSIS OF THE HUMAN LECITHIN-CHOLESTEROL ACYL TRANSFERASE GENE PROMOTER

    No full text
    In this report cis-acting sequences that direct transcription of the lecithin choleterol acyl transferase (LCAT) gene were identified. To assay the promoter activity, fragments from the 5' flanking region were fused upstream to the cloramphenicol acetyl transferase gene and transfected into Hep3B and HeLa cells. The gene sequences were active in both cell lines. A minimal promoter comprising only 71 bp is still fully active and contains a TATA box, a LFAI motif and two Sp1 binding sites. The activity of the promoter was entirely dependent on the Sp1 sites

    A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network.

    No full text
    The transcriptional activity of the p53 protein is central to its role in tumor suppression. Identification of the complete repertoire of p53-regulated genes is critical for dissecting the complexity of the p53 network. Although several different approaches have been used to characterize the p53 genetic program, we still lack a comprehensive molecular understanding of how p53 prevents cancer. Using a computational approach, we generated a genome-wide map of p53 binding sites (p53BS) to identify novel p53 target genes. We show that the presence of nearby p53BS can identify new proapoptotic members of the Bcl2 family. We show that p53 binds to p53BS identified in the BCL-G/BCL2L14 gene and that induction of this gene contributes to p53-mediated apoptosis. We found that p53 activates the COL18A1 gene encoding the precursor for the antiangiogenic factor endostatin. We also show that p53 up-regulates the MAP4K4 gene and activates the c-Jun NH2-terminal kinase (JNK) pathway to drive apoptosis. Thus, unbiased mapping of the genomic landscape of p53BS provides a systematic and complementary approach to identify novel factors and connections in the p53 genetic network. Our study illustrates how systematic genomic approaches can identify binding sites that are functionally relevant for a p53 transcriptional program. The genetic link among p53, antiangiogenic factors, and the JNK signaling pathway adds new dimensions to understanding p53 function in highly connected genetic networks

    Alpha/Beta Interferon Differentially Modulates the Clearance of Cytoplasmic Encapsidated Replication Intermediates and Nuclear Covalently Closed Circular Hepatitis B Virus (HBV) DNA from the Livers of Hepatocyte Nuclear Factor 1α-Null HBV Transgenic Mice

    No full text
    Treatment with alpha interferon is a standard therapy for patients with chronic hepatitis B virus (HBV) infections. This treatment can reduce virus load and ameliorate disease symptoms. However, in the majority of cases, alpha interferon therapy fails to resolve the chronic HBV infection. The reason alpha interferon therapy is inefficient at resolving chronic HBV infections is assumed to be because it fails to eliminate covalently closed circular (CCC) HBV DNA from the nuclei of infected hepatocytes. In an attempt to address this issue, the stability of HBV CCC DNA in response to alpha/beta interferon induction was examined in HNF1α-null HBV transgenic mice. Alpha/beta interferon induction by polyinosinic-polycytidylic acid [poly(I-C)] treatment efficiently eliminated encapsidated cytoplasmic HBV replication intermediates while only modestly reducing nuclear HBV CCC DNA. These observations indicate that nuclear HBV CCC DNA is more stable than cytoplasmic replication intermediates in response to alpha/beta interferon induction. Consequently it appears that for therapies to resolve chronic HBV infection efficiently, they will have to target the elimination of the most stable HBV replication intermediate, nuclear HBV CCC DNA

    Role of the hepatocyte nuclear factor-1beta (HNF-1beta) C-terminal domain in Pkhd1 (ARPKD) gene transcription and renal cystogenesis.

    No full text
    Hepatocyte nuclear factor-1beta (HNF-1beta) is a homeodomain-containing transcription factor that regulates tissue-specific gene expression in the kidney and other epithelial organs. Mutations of HNF-1beta produce congenital cystic abnormalities of the kidney, and previous studies showed that HNF-1beta regulates the expression of the autosomal recessive polycystic kidney disease (ARPKD) gene, Pkhd1. Here we show that the C-terminal region of HNF-1beta contains an activation domain that is functional when fused to a heterologous DNA-binding domain. An HNF-1beta deletion mutant lacking the C-terminal domain interacts with wild-type HNF-1beta, binds DNA, and functions as a dominant-negative inhibitor of a chromosomally integrated Pkhd1 promoter. The activation of the Pkhd1 promoter by wild-type HNF-1beta is stimulated by sodium butyrate or coactivators CREB (cAMP-response element)-binding protein (CBP) and P/CAF. The interaction with CBP and P/CAF requires the C-terminal domain. Expression of an HNF-1beta C-terminal deletion mutant in transgenic mice produces renal cysts, increased cell proliferation, and dilatation of the ureter similar to mice with kidney-specific inactivation of HNF-1beta. Pkhd1 expression is inhibited in cystic collecting ducts but not in non-cystic proximal tubules, despite transgene expression in this nephron segment. We conclude that the C-terminal domain of HNF-1beta is required for the activation of the Pkhd1 promoter. Deletion mutants lacking the C-terminal domain function as dominant-negative mutants, possibly by preventing the recruitment of histone acetylases to the promoter. Cyst formation correlates with inhibition of Pkhd1 expression, which argues that mutations of HNF-1beta produce kidney cysts by down-regulating the ARPKD gene, Pkhd1. Expression of HNF-1alpha in proximal tubules may protect against cystogenesis

    The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule

    No full text
    The Cl(-)/H(+) exchanger ClC-5 is essential for the endocytic activity of the proximal tubule cells and the tubular clearance of proteins filtered in the glomeruli. The mechanisms that regulate the expression of ClC-5 in general and its specific expression in the proximal tubule are unknown. In this study, we investigated the hypothesis that the hepatocyte nuclear transcription factor HNF1α, which is predominantly expressed in proximal tubule segments, may directly regulate the expression of ClC-5. In situ hybridization demonstrated that the expression of Clcn5 overlaps with that of Hnf1α in the developing kidney as well as in absorptive epithelia, including the digestive tract and yolk sac. Multiple binding sites for HNF1 were mapped in the 5'-regulatory sequences of the mouse and human Clcn5/CLCN5 genes. The transactivation of the Clcn5/CLCN5 promoter by HNF1α was verified in vitro, and the binding of HNF1α to the Clcn5 promoter in vivo was confirmed by chromatin immunoprecipitation in mouse kidney. The expression of Clcn5 was reduced in the proximal tubule segments of HNF1α-null kidneys, and it was rescued upon transfection of HNF1α-null cells with wild-type but not with mutant HNF1α. These data demonstrate that HNF1α directly regulates the expression of ClC-5 in the renal proximal tubule and yield insights into the mechanisms governing epithelial differentiation and specialized transport activities in the kidney
    • …
    corecore