64 research outputs found
The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaff ected by exposure to 50 Hz magnetic fi elds
Following in utero exposure to low dose radiation
(10 – 200 mGy), we recently observed a linear induction of DNA
double-strand breaks (DSB) and activation of apoptosis in the
embryonic neuronal stem/progenitor cell compartment. No
signifi cant induction of DSB or apoptosis was observed following
exposure to magnetic fi elds (MF). In the present study, we
exploited this in vivo system to examine whether exposure to MF
before and after exposure to 100 mGy X-rays impacts upon DSB
repair rates.
Materials and methods : 53BP1 foci were quantifi ed following
combined exposure to radiation and MF in the embryonic neuronal
stem/progenitor cell compartment. Embryos were exposed
in utero to 50 Hz MF at 300 m T for 3 h before and up to 9 h after
exposure to 100 mGy X-rays. Controls included embryos exposed
to MF or X-rays alone plus sham exposures.
Results : Exposure to MF before and after 100 mGy X-rays did not
impact upon the rate of DSB repair in the embryonic neuronal
stem cell compartment compared to repair rates following radiation
exposure alone.
Conclusions : We conclude that in this sensitive system MF do not
exert any signifi cant level of DNA damage and do not impede
the repair of X-ray induced damage
Minimization and management of wastes from biomedical research.
Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention efforts by facilities and reductions in waste generation resulting from improvements in research methods will continue
The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis
Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal
Sonic Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of Neocortical Progenitors
Innate lymphoid cells (ILCs) and innate-like lymphocytes have important roles in immune responses in the context of infection, cancer, and autoimmunity. The factors involved in driving the differentiation and function of these cell types remain to be clearly defined. There are several cellular signaling pathways involved in embryogenesis, which continue to function in adult tissue. In particular, the WNT, NOTCH, and Hedgehog signaling pathways are emerging as regulators of hematopoietic cell development and differentiation. This review discusses the currently known roles of WNT, NOTCH, and Hedgehog signaling in the differentiation and function of ILCs and innate-like lymphocytes
Loss of Pax6 Causes Regional Changes in Dll1 Expression in Developing Cerebral Cortex
The transcription factor Pax6 controls multiple aspects of forebrain development. Conditional deletion of Pax6 in embryonic mouse cortex causes increased proliferation of cortical progenitor cells and a concomitant decrease in neural differentiation. Notch signaling regulates the balance between proliferation and differentiation of cortical progenitor cells, suggesting a possible connection between Pax6 and Notch signaling. We investigated how expression of the Notch ligand delta-like 1 (Dll1) is altered by loss of Pax6. Acute cortex-specific deletion of Pax6 resulted in a widespread decrease in the density of Dll1+ cells at embryonic days 12.5 and 13.5 (E12.5 and E13.5). In constitutive loss-of-function mutants, decreases in the densities of Dll1+ cells were more limited both spatially and temporally. Controlled over-expression of Pax6 had no detectable effect on Dll1 expression. The proneural transcription factor Neurog2 is a target of Pax6 that can activate Dll1 expression and we found clear co-expression of Neurog2 and Dll1 in radial glial progenitors, suggesting that Pax6’s effect on Dll1 could be mediated through Neurog2. However, we found no change in Dll1+ cells in Neurog2−/− cortex suggesting either that Neurog2 is not directly involved, or that its loss of function in embryonic cortex can be compensated for
De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome
Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes
Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors
Glioblastoma multiforme (GBM) remains refractory to conventional therapy. CD133+ GBM cells have been recently isolated and characterized as chemo-/radio-resistant tumor-initiating cells and are hypothesized to be responsible for post-treatment recurrence. In order to explore the molecular properties of tumorigenic CD133+ GBM cells that resist treatment, we isolated CD133+ GBM cells from tumors that are recurrent and have previously received chemo-/radio-therapy. We found that the purified CD133+ GBM cells sorted from the CD133+ GBM spheres express SOX2 and CD44 and are capable of clonal self-renewal and dividing to produce fast-growing CD133− progeny, which form the major cell population within GBM spheres. Intracranial injection of purified CD133+, not CD133− GBM daughter cells, can lead to the development of YKL-40+ infiltrating tumors that display hypervascularity and pseudopalisading necrosis-like features in mouse brain. The molecular profile of purified CD133+ GBM cells revealed characteristics of neuroectoderm-like cells, expressing both radial glial and neural crest cell developmental genes, and portraying a slow-growing, non-differentiated, polarized/migratory, astrogliogenic, and chondrogenic phenotype. These data suggest that at least a subset of treated and recurrent GBM tumors may be seeded by CD133+ GBM cells with neural and mesenchymal properties. The data also imply that CD133+ GBM cells may be clinically indolent/quiescent prior to undergoing proliferative cell division (PCD) to produce CD133− GBM effector progeny. Identifying intrinsic and extrinsic cues, which promote CD133+ GBM cell self-renewal and PCD to support ongoing tumor regeneration may highlight novel therapeutic strategies to greatly diminish the recurrence rate of GBM
Lateral cortical Cdca7 expression levels are regulated by Pax6 and influence the production of intermediate progenitors
Abstract Background We studied whether regulation of Cdca7 (Cell division cycle associated 7) expression by transcription factor Pax6 contributes to Pax6’s cellular actions during corticogenesis. The function of Cdca7 in mediating Pax6’s effects during corticogenesis has not been explored. Pax6 is expressed by radial glial progenitors in the ventricular zone of the embryonic cortical neuroepithelium, where it is required for the development of a normal complement of Tbr2-expressing intermediate progenitor cells in the subventricular zone. Pax6’s expression levels are graded across the ventricular zone, with highest levels laterally where Tbr2-expressing progenitors are generated in greatest numbers at early stages of corticogenesis. Methods We used in situ hybridization and immunohistochemistry to analyse patterns of Cdca7 and Pax6 expression in cortical tissue from wild-type and Pax6 −/− embryos. In each genotype we compared the graded expression of the two genes quantitatively at several ages. To test whether defects in Cdca7 expression in lateral cortical cells might contribute to the cellular defects in this region caused by Pax6 loss, we electroporated a Cdca7 expression vector into wild-type lateral cortex and examined the effect on the production of Tbr2-expressing cells. Results We found that Cdca7 is co-expressed with Pax6 in cortical progenitors, at levels opposite to those of Pax6. Lowest levels of Cdca7 are found in the radial glial progenitors of lateral cortex, where Pax6 levels are highest. Higher levels of Cdca7 are found in ventral telencephalon, where Pax6 levels are low. Loss of Pax6 causes Cdca7 expression to increase in the lateral cortex. Elevating Cdca7 in normal lateral cortical progenitors to levels close to those normally found in ventral telencephalon reduces their production of Tbr2-expressing cells early in lateral cortical formation. Conclusion Our results suggest that Pax6 normally represses Cdca7 expression in the lateral cortex and that repression of Cdca7 in cells of this region is required for their production of a normal complement of Tbr2-expressing intermediate progenitors
Reduction and Management of No-Shows by Family Medicine Residency Practice Exemplars
PURPOSE We wanted to describe the methods used by family medicine residency practices with low no-show rates (rate exemplars) and those able to keep visit rates high despite no-shows (management exemplars)
- …