144 research outputs found

    Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound Chapter of Italian Society of Medical Radiology (SIRM)

    Get PDF
    Thyroid ultrasonography (US) is the gold standard for thyroid imaging and its widespread use is due to an optimal spatial resolution for superficial anatomic structures, a low cost and the lack of health risks. Thyroid US is a pivotal tool for the diagnosis and follow-up of autoimmune thyroid diseases, for assessing nodule size and echostructure and defining the risk of malignancy in thyroid nodules. The main limitation of US is the poor reproducibility, due to the variable experience of the operators and the different performance and settings of the equipments. Aim of this consensus statement is to standardize the report of thyroid US through the definition of common minimum requirements and a correct terminology. US patterns of autoimmune thyroid diseases are defined. US signs of malignancy in thyroid nodules are classified and scored in each nodule. We also propose a simplified nodule risk stratification, based on the predictive value of each US sign, classified and scored according to the strength of association with malignancy, but also to the estimated reproducibility among different operators

    PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines

    Get PDF
    PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR)

    Smoke Evacuation During Laparoscopic Surgery: A Problem Beyond the COVID-19 Period. A Quantitative Analysis of CO2 Environmental Dispersion Using Different Devices

    Get PDF
    Background. The COVID-19 pandemic leads to several debates regarding the possible risk for healthcare professionals during surgery. SAGES and EAES raised the issue of the transmission of infection through the surgical smoke during laparoscopy. They recommended the use of smoke evacuation devices (SEDs) with CO2 filtering systems. The aim of the present study is to compare the efficacy of different SEDs evaluating the CO2 environmental dispersion in the operating theater. Methods. We prospectively evaluated the data of 4 group of patients on which we used different SEDs or standard trocars: AIRSEAL system (S1 group), a homemade device (S2 group), an AIRSEAL system + homemade device (S3 group), and with standard trocars and without SED (S4 group). Quantitative analysis of CO2 environmental dispersion was carried out associated to the following data in order to evaluate the pneumoperitoneum variations: a preset insufflation pressure, real intraoperative pneumoperitoneum pressure, operative time, total volume of insufflated CO2, and flow rate index. Results. 16 patients were prospectively enrolled. The [CO2] mean value was 711 ppm, 641 ppm, 593 ppm, and 761 ppm in S1, S2, S3, and S4 groups, respectively. The comparison between data of all groups showed statistically significant differences in the measured ambient CO2 concentration. Conclusion. All tested SEDs seem to be useful to reduce the CO2 environmental dispersion respect to the use of standard trocars. The association of AIRSEAL system and a homemade device seems to be the best solution combining an adequate smoke evacuation and a stable pneumoperitoneum during laparoscopic surgery

    Otx015 epi‐drug exerts antitumor effects in ovarian cancer cells by blocking gnl3‐mediated radioresistance mechanisms: Cellular, molecular and computational evidence

    Get PDF
    Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra‐Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015‐mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC

    Calcineurin gamma catalytic subunit ppp3cc inhibition by mir-200c-3p affects apoptosis in epithelial ovarian cancer

    Get PDF
    Epithelial ovarian cancer (EOC) outpaces all the other forms of the female reproductive system malignancies. MicroRNAs have emerged as promising predictive biomarkers to therapeutic treatments as their expression might characterize the tumor stage or grade. In EOC, miR-200c is considered a master regulator of oncogenes or tumor suppressors. To investigate novel miR-200c-3p target genes involved in EOC tumorigenesis, we evaluated the association between this miRNA and the mRNA expression of several potential target genes by RNA-seq data of both 46 EOC cell lines from Cancer Cell line Encyclopedia (CCLE) and 456 EOC patient bio-specimens from The Cancer Genome Atlas (TCGA). Both analyses showed a significant anticorrelation between miR-200c-3p and the protein phosphatase 3 catalytic subunit Îł of calcineurin (PPP3CC) levels involved in the apoptosis pathway. Quantitative mRNA expression analysis in patient biopsies confirmed the inverse correlation between miR-200c-3p and PPP3CC levels. In vitro regulation of PPP3CC expression through miR-200c-3p and RNA interference technology led to a concomitant modulation of BCL2- and p-AKT-related pathways, suggesting the tumor suppressive role of PPP3CC in EOC. Our results suggest that inhibition of high expression of miR-200c-3p in EOC might lead to overexpression of the tumor suppressor PPP3CC and subsequent induction of apoptosis in EOC patients

    Effect of Vitamin D Supplementation on Obesity-Induced Insulin Resistance: A Double-Blind, Randomized, Placebo-Controlled Trial

    Get PDF
    Objective: The aim was to investigate whether vitamin D supplementation, combined with a hypocaloric diet, could have an independent effect on insulin sensitivity in subjects with both overweight and hypovitaminosis D. Changes from baseline in anthropometric parameters, body composition, glucose tolerance, and insulin secretion were considered as secondary outcomes. Methods: Eighteen volunteers who were nondiabetic and vitamin D deficient and had BMI > 25 kg/m2 were randomized (1:1) in a double-blind manner to a hypocaloric diet + either oral cholecalciferol at 25,000 IU/wk or placebo for 3 months. Hyperinsulinemic-euglycemic clamp to measure insulin sensitivity was performed at baseline and after intervention. Results: Body weight in both groups decreased significantly (−7.5% in the vitamin D group and −10% in the placebo group; P < 0.05 for both), with no between-group differences. Serum 25-hydroxyvitamin D levels in the vitamin D group increased considerably (from 36.7 ± 13.2 nmol/L to 74.8 ± 18.7 nmol/L; P < 0.001). Insulin sensitivity in the vitamin D group improved (from 4.6 ± 2.0 to 6.9 ± 3.3 mg·kg−1·min−1; P < 0.001), whereas no changes were observed in the placebo group (from 4.9 ± 1.1 to 5.1 ± 0.3 mg·kg−1·min−1; P = 0.84). Conclusions: Cholecalciferol supplementation, combined with a weight loss program, significantly improves insulin sensitivity in healthy subjects with obesity and might represent a personalized approach for insulin-resistant subjects with obesity

    Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept

    Get PDF
    In the last few years, more attention has been given to the "non-calcemic" effect of vitamin D. Several observational studies and meta-analyses demonstrated an association between circulating levels of vitamin D and outcome of many common diseases, including endocrine diseases, chronic diseases, cancer progression, and autoimmune diseases. In particular, cells of the immune system (B cells, T cells, and antigen presenting cells), due to the expression of 1α-hydroxylase (CYP27B1), are able to synthesize the active metabolite of vitamin D, which shows immunomodulatory properties. Moreover, the expression of the vitamin D receptor (VDR) in these cells suggests a local action of vitamin D in the immune response. These findings are supported by the correlation between the polymorphisms of the VDR or the CYP27B1 gene and the pathogenesis of several autoimmune diseases. Currently, the optimal plasma 25-hydroxyvitamin D concentration that is necessary to prevent or treat autoimmune diseases is still under debate. However, experimental studies in humans have suggested beneficial effects of vitamin D supplementation in reducing the severity of disease activity. In this review, we summarize the evidence regarding the role of vitamin D in the pathogenesis of autoimmune endocrine diseases, including type 1 diabetes mellitus, Addison's disease, Hashimoto's thyroiditis, Graves' disease and autoimmune polyendocrine syndromes. Furthermore, we discuss the supplementation with vitamin D to prevent or treat autoimmune diseases

    Somatic deletion in exon 10 of aryl hydrocarbon receptor gene in human GH-secreting pituitary tumors

    Get PDF
    Objective/Purpose: The aryl hydrocarbon receptor (AHR) pathway plays a critical role in the biology of Growth Hormone (GH)-secreting pituitary tumor (somatotropinoma). Germline rs2066853 AHR variant was found to be more frequent among acromegaly patients and associated with a more severe disease with larger invasive somatropinoma, and with resistance to somatostatin analogs treatment in patients living in polluted areas. However, no somatic changes in AHR gene have been reported so far in acromegaly patients. On that basis, the aim of the study was to assess at the somatic level the AHR gene status encompassing exon 10 region, also because of the high rate of variants found in this genomic region. Methods: A cohort of 13 patients aged 20\u201376 years with biochemical, clinical and histological diagnosis of somatotropinoma was studied. DNA and RNA from pituitary tumor histological samples have been extracted and analyzed by PCR and direct sequencing for AHR gene variants, and compared with corresponding patients\u2019 germline DNA as well as normal pituitary tissue as reference control. Results: A degenerated letter codes in the region corresponding to AHR exon 10 (c.1239-c.2056) was detected in somatotropinomas-derived DNA but not in that of matched germline and pituitary normal tissue. By multiple PCR and sequencing analysis, we observed amplification only before codon 1246 and after codon 1254, confirming the presence of a tumor-restricted somatic deletion in the 5\u2019 upstream region of AHR exon 10. Analysis of PCR-amplified cDNA revealed a wildtype sequence of exon 9 and 10 in normal pituitary tissue, and a wildtype sequence of exon 9 and 10 up to codon 1246 and no sequence after the deletion region (c.1246-c.1254) in 6 out of 9 tumor samples. Patients carrying the germline rs2066853 AHR variant showed no somatic LOH at the corresponding genetic locus. Conclusion: This is the first demonstration of a recurrent somatic deletion in the exon 10 of the AHR gene in somatotropinomas. The functional impact of this genetic finding needs to be clarifie

    Distinguishable DNA methylation defines a cardiac-specific epigenetic clock

    Get PDF
    BACKGROUND The present study investigates whether epigenetic differences emerge in the heart of patients undergoing cardiac surgery for an aortic valvular replacement (AVR) or coronary artery bypass graft (CABG). An algorithm is also established to determine how the pathophysiological condition might influence the human biological cardiac age. RESULTS Blood samples and cardiac auricles were collected from patients who underwent cardiac procedures: 94 AVR and 289 CABG. The CpGs from three independent blood-derived biological clocks were selected to design a new blood- and the first cardiac-specific clocks. Specifically, 31 CpGs from six age-related genes, ELOVL2, EDARADD, ITGA2B, ASPA, PDE4C, and FHL2, were used to construct the tissue-tailored clocks. The best-fitting variables were combined to define new cardiac- and blood-tailored clocks validated through neural network analysis and elastic regression. In addition, telomere length (TL) was measured by qPCR. These new methods revealed a similarity between chronological and biological age in the blood and heart; the average TL was significantly higher in the heart than in the blood. In addition, the cardiac clock discriminated well between AVR and CABG and was sensitive to cardiovascular risk factors such as obesity and smoking. Moreover, the cardiac-specific clock identified an AVR patient's subgroup whose accelerated bioage correlated with the altered ventricular parameters, including left ventricular diastolic and systolic volume. CONCLUSION This study reports on applying a method to evaluate the cardiac biological age revealing epigenetic features that separate subgroups of AVR and CABG
    • 

    corecore