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Clinical Epigenetics

Distinguishable DNA methylation defines 
a cardiac-specific epigenetic clock
A. Mongelli1,10†, S. Panunzi2†, M. Nesta3, M. Gottardi Zamperla1, S. Atlante1, V. Barbi1, V. Mongiardini1,11, 
F. Ferraro4, S. De Martino4, L. Cis4, A. Re2,4, S. Maltese5, T. Bachetti6, M. T. La Rovere7, F. Martelli8, M. Pesce9, 
S. Nanni3,4, M. Massetti3,4, A. Pontecorvi3,4, A. Farsetti2* and C. Gaetano1* 

Abstract 

Background The present study investigates whether epigenetic differences emerge in the heart of patients under-
going cardiac surgery for an aortic valvular replacement (AVR) or coronary artery bypass graft (CABG). An algorithm is 
also established to determine how the pathophysiological condition might influence the human biological cardiac 
age.

Results Blood samples and cardiac auricles were collected from patients who underwent cardiac procedures: 94 
AVR and 289 CABG. The CpGs from three independent blood-derived biological clocks were selected to design a 
new blood- and the first cardiac-specific clocks. Specifically, 31 CpGs from six age-related genes, ELOVL2, EDARADD, 
ITGA2B, ASPA, PDE4C, and FHL2, were used to construct the tissue-tailored clocks. The best-fitting variables were com-
bined to define new cardiac- and blood-tailored clocks validated through neural network analysis and elastic regres-
sion. In addition, telomere length (TL) was measured by qPCR. These new methods revealed a similarity between 
chronological and biological age in the blood and heart; the average TL was significantly higher in the heart than in 
the blood. In addition, the cardiac clock discriminated well between AVR and CABG and was sensitive to cardiovascu-
lar risk factors such as obesity and smoking. Moreover, the cardiac-specific clock identified an AVR patient’s subgroup 
whose accelerated bioage correlated with the altered ventricular parameters, including left ventricular diastolic and 
systolic volume.

Conclusion This study reports on applying a method to evaluate the cardiac biological age revealing epigenetic 
features that separate subgroups of AVR and CABG.

Keywords Epigenetic clock, Aging, DNAmAge, Pyrosequencing, Cardiovascular disease, DNA methylation, 
DNAmAge, Heart biological age, Risk factors
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Background
An increasing number of studies have demonstrated that 

epigenetics is influential in the occurrence and develop-

ment of cardiac hypertrophy [1] and coronary artery 

disease (CAD) [2]. Specifically, DNA methylation signa-

tures have been associated with various cardiac diseases. 

Moreover, it has been suggested that changes in this 

modification may predict future recurrence or compli-

cation [3]. However, whether, in the presence of specific 

pathophysiological conditions, the epigenetic landscape 

will impact the cardiac aging process is currently unclear.

The myocardium is a highly structured tissue con-

sisting of different cell types, including cardiomyo-

cytes, endothelial cells, fibroblasts, smooth muscle cells, 

inflammatory and microvascular cells, and a small pool 

of pluripotent stem cells [4]. Despite its heterogeneity, 

the cardiac muscle has intrinsic biological and molecular 

features that distinguish it from other tissues or organs. 

For example, unlike the bone marrow stem cell reservoir, 

which is virtually unlimited [5], the heart has a minimal 

regenerative capacity [6, 7]. Specifically, in a steady-state 

condition, the rate of heart renewal decreases annually 

from 1% at the age of 25 to 0.45% at 75, resulting in ineffi-

cient self-renewal [6]. In addition, a recent study compar-

ing the cellular mass daily turnover of different human 

cell types reported that the cardiomyocytes’ rate approxi-

mates 0.001  g/day, lymphocytes rate is around 1  g/day, 

while erythrocytes and neutrophils’ rate is around 10 g/

day [8]. Consistently, the adult cardiac muscle under-

goes little changes in DNA methylation compared to its 

dynamic at the early embryonic and perinatal stages [9–

11]. In addition, in rodents, the cardiac muscle seems to 

accumulate methylated cytosine forms, a feature that has 

also been associated with its meager endogenous prolif-

eration rate [12, 13].

Variations in the level and distribution of methylated 

CpGs in the human genome and those of several ani-

mal species have been widely used to determine the bio-

logical age compared to the chronological one. Indeed, 

multiple epigenetic clocks based on genomic DNA CpG 

methylation patterns have been developed [14–18]. The 

most popular procedures for DNAmAge determina-

tion are based on evaluating many CpGs. They have 

been validated on cohorts of hundreds or thousands of 

blood-derived DNA samples [15, 19–21]. Their applica-

tion contributed to defining the so-called DNA methyla-

tion age (DNAmAge), which in some cases may unravel 

the presence of a biological age deceleration or accelera-

tion compared to the chronological one. An accelerated 

DNAmAge has been associated with the risk of develop-

ing diseases or a reduced healthspan and lifespan [22]. 

Multi-tissue epigenetic clocks have also been developed, 

allowing the simultaneous determination of DNAmAge 

in different organs of the same individual, including the 

heart [14, 23].

In parallel, other methods have been developed in 

humans and mice based on evaluating a reduced num-

ber of methylated CpGs measurable in whole blood DNA 

[16–18, 24–28]. Although applicable to multi-organ sam-

ples [27], these clocks seem to perform better on DNA 

obtained from the blood since the reduced number of 

CpGs limits their application to a multi-tissue evalu-

ation. Nevertheless, these approaches are adequate to 

determine the individual DNAmAge [29]. Furthermore, 

they are technically based on the direct sequencing of 

selected CpGs, having a practical advantage in solving 

forensic problems or providing a rapid solution to pro-

cessing many clinical or experimental samples at a negli-

gible cost. Hence, although several multi-tissue methods 

for biological clock determination are available based on 

many CpGs common to different organs, the develop-

ment of tissue-specific procedures based on a limited 

number of CpGs is still of interest to rapidly investigate 

unprecedented questions possibly influenced by aging-

related organ-specific features [30].

The population of interest in this work comprises 

patients undergoing cardiac surgery for aortic valve 

replacement (AVR) or coronary artery bypass graft 

(CABG) whose auricle specimens and blood samples 

were made available to us. The DNAmAge differences 

between blood and cardiac tissues of the same indi-

vidual were evaluated by comparing and combining 

three known and validated epigenetic clocks based on 

a reduced number of CpGs [16, 17, 24]. These methods 

were further developed to obtain novel tissue-specific 

algorithms based on different CpGs in the same amplicon 

of the pre-defined genes. The novel clocks were defined 

as the Mongelli & Panunzi (M&P) cardiac and blood 

models.

The study suggests that the heart may have intrinsic 

features that influence the organ-specific aging process 

defined as DNAmAge and identifies a group of AVR 

patients characterized by the worst ventricular param-

eters as significantly accelerated and distinguishable from 

the other participants.

Results
Definition of a blood‑specific epigenetic clock

Published blood-based pyrosequencing methods to 

evaluate the human biological age have been applied to 

our blood and auricle samples from the same individual 

(n = 383) (Additional file 1: Fig. S1A, C, E). As a result, in 

all epigenetic clocks [15, 16, 23], the heart was younger 

than the blood (Additional file  1: Fig. S1B, D, F). How-

ever, considering the intrinsic features of the heart, we 

reasoned that cardiac and blood-specific formulas could 
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better represent the differences between the two tissues. 

Hence, we analyzed all CpGs (31 in total) present in the 

genes used to define the three blood-specific clocks, spe-

cifically Weidner [16], Zbiec-Piekarska [24], and Bekaert 

[17] (Additional file  1: Fig. S1 and Additional file  2: 

Table  S1. These CpGs are distributed in the promoter 

region of the six genes of the above blood-specific clock 

models. We used these 31 CpGs to define our two clocks, 

named blood-specific M&P, described in this section, and 

cardiac-specific M&P epigenetic clock (see below para-

graph 4.2). The Additional file 3: Fig. S2 depicts the heat 

map related to the univariable (Additional file 3: Fig. S2A) 

and multivariable (Additional file 3: Fig. S2B) procedures 

(Stepwise and Lasso regression, Recursive Feature Selec-

tion) employed in fitting CpGs for the blood samples 

of the training dataset (Additional file  2: Table  S1). The 

blood-specific M&P model included only those predic-

tors significant at a p level of 0.10: ASPA (CpG1); EDAR-

ADD (CpG2); ELOVL2 (CpG2, CpG3, CpG4, CpG5, and 

CpG6); FHL2 (CpG2, CpG3, CpG4, CpG5, and CpG10); 

ITGA2B (CpG2) and PDE4C (CpG5) (Additional file  4: 

Table  S2). Figure  1 shows the blood-specific clock per-

formance on the whole dataset. Additional file 2: Table S1 

reports the correlation between the selected CpGs and 

the chronological age in the training and validation sam-

ple. Although some CpGs entered the model only with a 

linear term, some exhibit significant linear and quadratic 

coefficients. In addition, the chronological age in blood 

samples has been compared to that predicted by the 

M&P method, and no differences emerged (paired t test 

p value > 0.05). The complete blood-based formula is 

reported in Table 1.

The median absolute deviation (MAD) of the DeltaAge 

represents the range of normality. In this work, the MAD 

value obtained from the Mongelli & Panunzi (M&P) 

method is 2.78 (Fig. 1B) compared to Bekaert’s 3.34; Wei-

dner’s 9.55, and Zbiec-Piekarska 7.08 (Additional file  1: 

Fig. S1, panels B, D, F). Interestingly, the blood-based 

M&P clock applied to the cardiac samples showed a sig-

nificant deceleration of the DNAmAge paralleled by a 

DeltaAge reduction (Fig. 1A, B, blue dots). This evidence 

prompted us to explore the possibility of developing a 

cardiac-specific clock. Additional file 4: Table S2 reports 

the list of CpGs used to define the blood and cardiac 

epigenetic clocks and their localization on the genome 

(human genome version Hg38).

The performance of all models used to define 

DNAmAge and DeltaAge values from the blood samples 

in the training and testing datasets are reported in Addi-

tional file 5: Fig. S3 and Additional file 6: Fig. S4, respec-

tively. In addition, Additional file 7: Fig. S5 compares the 

different DeltaAge results obtained after applying the dif-

ferent DNAmAge algorithms; Additional file 8: Table S3 

reports the performance of each method in correctly 

Fig. 1 Mongelli&Panunzi (M&P) blood model. Red dots: blood samples (n = 313); blue dots: cardiac tissue samples (n = 313). A The correlation 
of chronological age and DNAmAge. Red dots align with the bisector, while blue dots do not. Chronological age of the sample (mean ± SD) 
66.5 ± 9.7 years; M&P blood-specific formula on blood samples age: 65.7 ± 7.6 years (paired T test of chronological age vs. blood DNAmAge p = ns); 
M&P blood-specific on cardiac tissue samples: 24.0 ± 10.0 years (paired t test chronological age vs. cardiac tissue DNAmAge p value < 0.0001). B 
DeltaAges of blood and cardiac tissue. Blood – 0.40 ± 5.30 years; cardiac tissue − 42.0 ± 11.30. paired T test: p < 0.0001
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predicting the chronological age, whereas Additional 

file  9: Table  S4 shows the correlation between chrono-

logical age and DNAmAge in each dataset. Additionally, 

M&P blood-specific algorithm has been applied to blood 

samples of healthy volunteers (Additional file  10: Fig. 

S6). The average of their chronological ages is 57.4 years 

with a standard deviation of 4.8, while the DNAmAge 

is 56.1 ± 5.2. Additional file 10: Fig. S6A shows the scat-

ter plot between chronological age and DNAmAge in 

healthy volunteers. The paired t test between Chrono-

logical and DNAmAge reveals no significant difference (p 

value = 0.097). Moreover, 57.7% of the sample is distrib-

uted within the MAD value of ± 2.78, meaning that the 

DNAmAge is predominantly aligned to the chronological 

one (Additional file 10: Fig. S6B).

Definition of a cardiac‑specific epigenetic clock

Attempting to evaluate the DNAmAge of the heart, we 

found that different CpGs of the same genes showed 

to be significant predictors of the donors’ chronologi-

cal age (Additional file  11: Fig. S7). The heat maps in 

Additional file  11: Fig. S7 report the univariable rela-

tionships (Additional file 11: Fig. S7A) and the multi-

variable associations (Additional file 11: Fig. S7B) from 

the three selection procedures of the considered CpGs. 

The final cardiac model included the following CpGs 

as predictors of chronological age: EDARADD (CpG1), 

ELOVL2 (CpG2, CpG3, CpG5, and CpG7), FHL2 

(CpG1, CpG4, CpG5, CpG7, and CpG8), ITGA2B 

(CpG1 and CpG2), PDE4C (CpG3 and CpG5) (Addi-

tional file 4: Table S2 and Table 1 for the cardiac-spe-

cific formula). Also, in this case, some CpGs entered 

the model only linearly, others with a first and a sec-

ond-order relationship. Finally, applying the new for-

mulation to the samples of cardiac origin, we obtained 

a sample alignment with an  R2 of 0.510 (Fig. 2A), and 

the fitting of the chronological age of the donors pro-

duced a MAD of 3.46 (Fig. 2B).

In addition, no differences in DeltaAges were observed 

between the training and testing groups (Additional 

file 12: Fig. S8A–C). The M&P blood and cardiac-specific 

clocks were then applied to all samples, and no differ-

ences emerged between the blood and cardiac DeltaAge, 

suggesting that the cardiac tissue might not be younger 

than the blood and that, on average, both tissues reflected 

the chronological age of the donor (Fig. 3).

Additional file 13: Table S5 shows the results of the cor-

relation between CpG methylation levels and chrono-

logical age. The mean and the median of each epigenetic 

clock are reported in Additional file 14: Table S6. Finally, 

in Additional file 15: Table S7, the descriptive statistic of 

the M&P cardiac-specific model is reported.

Finally, neural networks (NNs) were built by consider-

ing all the CpGs of the studied genes as inputs. The 31 

CpGs were entered as inputs for the biological age predic-

tion. Panel A and B of Additional file 16: Fig. S9 show the 

neural networks associated with the blood and cardiac 

tissue models, respectively. Additional file  17: Table  S8 

reports the prediction abilities of the NNs in terms of 

absolute DeltaAge and MAD. A minimal improvement is 

observed with the machine learning approach when con-

sidering the cardiac tissue: MAD: 3.46 (M&P method and 

14 CpGs from 5 genes) vs. 3.28 (NN, with 31 CpGs from 

six genes).

On the other hand, no improvement could be observed 

applying NN to the blood tissue: MAD: 2.78 (M&P 

method and 12 CpGs from 6 genes) vs. 3.83 from the 

NN. This result suggests that the proposed M&P blood-

tailored clock, with only 12 CpGs from 6 genes, performs 

better than an approach that involves more complex 

nonlinear relationships and a more significant number 

of features. Therefore, the results prompted us to use the 

Table 1 M&P epigenetic clock formulas

To determine DNAmAge, coefficients must be multiplied by the percentage of 

CpG methylation

M&P epigenetic clocks Formula

Blood  + 44.6227153511
 − 0.3019982767*EDARADD(CpG2)
 + 0.2328338368*ELOVL2(CpG2)
 − 0.5749152672*ELOVL2(CpG3)
 − 0.9899312404*ELOVL2(CpG6)
 + 0.6160217020*FHL2(CpG10)
 − 0.9602220285*FHL2(CpG2)
 + 2.4305557761*FHL2(CpG3)
 − 0.1896789356*FHL2(CpG4)
 − 0.0865888452*ITGA2B(CpG2)
 + 1.0970579110*PDE4C(CpG5)
 − 0.0006750886*ASPA(CpG1)2

 + 0.0025856173*ELOVL2(CpG4)2

 + 0.0111994179*ELOVL2(CpG6)2

 − 0.0131271779*FHL2(CpG10)2

 + 0.0095023800*FHL2(CpG2)2

 − 0.0185023682*FHL2 (CpG3)2

 − 0.0102953607*PDE4C (CpG5)2

Heart  + 70.773560858
 + 0.182565872*EDARADD(CpG1)
 + 0.848763871*ELOVL2(CpG2)
 + 0.100544271*ELOVL2 (CpG5)
 − 1.531702946*ELOVL2(CpG7)
 + 1.000713439*FHL2(CpG1)
 − 0.674486107*FHL2(CpG4)
 + 1.170946852*FHL2(CpG5)
 + 0.816922873*FHL2(CpG7)
 − 0.641544097*FHL2(CpG8)
 − 0.958506956*ITGA2B(CpG1)
 + 0.211886446*ITGA2B(CpG2)
 − 0.008128604*ELOVL2(CpG3)2

 + 0.016263489*ELOVL2(CpG7)2

 − 0.026586745*FHL2(CpG5)2

 + 0.008172081*ITGA2B(CpG1)2

 − 0.026087696*PDE4C (CpG3)2

 + 0.014023034*PDE4C(CpG5)2
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proposed M&P (more parsimonious) methods for the 

chronological age prediction from the blood and heart 

samples.

DNAmAge distribution between AVR and CABG 

and associated risk factors

In this study, we investigated whether AVR or CABG 

influenced the global average distribution of DeltaAge in 

the blood and cardiac cohorts. The features of our popu-

lation study are reported in Table 2.

Average DeltaAges for blood were −  1.4 ± 4.8 and 

− 0.10 ± 5.4 in AVR and CABG, respectively (p = 0.049) 

(Fig.  4A). However, the average DeltaAge for cardiac 

samples in the AVR group was −  1.3 ± 6.9 vs. 0.7 ± 5.9 

in the CABG group (p = 0.02) (Fig. 4B). Next, we investi-

gated the detailed distribution of the biological age. Spe-

cifically, groups with decelerated, regular, and accelerated 

biological age compared with the chronological one were 

detected in the AVR vs. CABG blood and heart samples 

(Fig. 4C, D; p = 0.002). Differences emerged in the blood’s 

normal and accelerated AVR vs. CABG groups, show-

ing that 56.8% of AVRs had a normal DeltaAge distribu-

tion while 13.5% were accelerated compared to 36.5% 

and 30.5% of the CABGs (p = 0.006; p = 0.011 respec-

tively). However, in the cardiac tissue, we found differ-

ent percentages of normal/decelerated/accelerated in 

the two groups (p = 0.048), with 39.7% of the AVRs hav-

ing a decelerated DeltaAge, indicating this condition is 

enriched among AVRs and in comparison with 24.5% for 

the CAGB (Fig. 4D).

Fig. 2 M&P cardiac-specific formula applied to cardiac tissue. A Comparison of chronological age vs. DNAmAge. Samples align to the bisector. 
Chronological age versus cardiac-specific DNAmAge (mean ± SD, 66.4 ± 7.4). paired T test p value = ns. B DeltaAge values were obtained after 
applying the cardiac-specific formula (0.60 ± 6.3; MAD 3.46)

Fig. 3 DeltaAges compares blood and cardiac tissue using a specific 
M&P algorithm for both samples. Red lines delimit the blood MAD 
(± 2.78), while blue lines delimit the cardiac tissue MAD (± 3.46). 
Paired t test reveals a non-significative (ns) p value (> 0.05)
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Finally, we explored whether crucial CVD risk factors 

influenced the distribution of AVR and CABG’s Del-

taAge. The Cochran–Mantel–Haenszel test was used to 

assess if the distributions in Normal/Decelerated/Accel-

erated in the AVR and CABG groups were conditionally 

independent in each stratum of the CVD risk factors. The 

test was significant when considering BMI as a stratifica-

tion factor (p = 0.002), with a stronger association in the 

group with BMI < 30  kg/m2. Post hoc analysis for Pear-

son’s Chi-Squared Test, with p values adjusted for multi-

ple comparisons by the Benjamini–Hochberg correction, 

was used to test differences in percentages between AVR 

and CABG. In the group with BMI < 30 kg/m2, we found 

that the AVG group had about twice the percentage of 

normal and about half of the accelerated individuals 

compared to the CABG group (Table 2). When the Del-

taAge distributions were compared between AVR and 

CABG in the two subsamples of individuals with and 

without smoke habits, the risk factor influenced the asso-

ciation: smoking history determined a more significant 

percentage of AVR donors with a normal DeltaAge. At 

the same time, CABGs were characterized by accelerated 

individuals (Table  3). On the other hand, no significant 

association was found for the heart samples, even if the 

AVR group presented more significant percentages of 

individuals with decelerated DNAmAge (Table 4).

The cardiological condition (AVR/CABG) was also 

tested in a multinomial model for the prediction of 

DeltaAges. In the blood sample, the risk of accelerated 

DeltaAges was more than three times greater in CABGs 

than in AVRs (OR: 3.4, p = 0.001), while in the cardiac 

samples, the risk of decelerated DeltaAges was reduced 

by more than half for the CABG group compared to 

AVRs (OR: 0.47, p = 0.02).

Cardiac structural alteration prevails among accelerated 

AVRs

Seventy-seven percent of individuals with a BMI higher 

than 30  kg/m2 and with smoke habits were CABG, and 

smoke was significantly associated (p < 0.001) with the 

specific pathophysiological condition considering that 

84% of smokers were in the CABG group. These results 

indicate that the reduced incidence of these risk factors 

in the AVRs might contribute to their predominantly 

normal or younger cardiac biological age. This evidence 

prompted us to evaluate whether structural and func-

tional features of the heart could be associated with 

accelerated or decelerated AVRs compared to CABG. 

Therefore, we explored whether these groups had echo-

cardiographic physical and functional parameters dis-

tributed differently. The following were evaluated: the 

stroke volume (SV), the left ventricular end-diastolic and 

systolic volumes (LVEDV; LVESV), the septal (S) and left 

posterior ventricular wall (LVPW) thickness, the ejection 

fraction (EF), and the diameter of the diastolic and sys-

tolic left ventricle (LVDd; LVSd). Interestingly, DeltaAge 

acceleration in the AVRs correlated with a significant 

Table 2 Population study’s features

In bold are reported the significant p values

Population study (tot n = 383) AVR (n = 94) CABG (n = 289) Chi‑squared 
p value 
overall

Male 58 (15.1%) 229 (59.8%) 0.0007

Female 36 (9.4%) 60 (15.7%)

BMI ≥ 30 Male 11 (12.9%) Male 54 (63.5%) 0.20

Female 6 (7.1%) Female 14 (16.5%)

Smoker Male 20 (13.8%) Male 101 (69.7%) 0.005

Female 10 (6.9%) Female 14 (9.7%)

Former smoker Male 0 Male 35 (85.4%) n.a

Female 0 Female 6 (14.6%)

Congestive heart failure Male 5 (33.3%) Male 1 (6.7%) 0.31

Female 8 (53.3%) Female 1 (6.7%)

Atrial fibrillation Male 13 (29.5%) Male 16 (36.4%) 0.11

Female 11 (25.0%) Female 4 (9.1%)

Hypertension Male 43 (13.2%) Male 203 (62.3%) 0.0004

Female 29 (8.9%) Female 51 (15.6%)

Dyslipidemia Male 25 (9.1%) Male 182 (66.4%)  < 0.0001

Female 22 (8.0%) Female 45 (16.4%)
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increase in SV, LVEDV, and LVESV compared to the 

decelerated AVRs and both CABG groups (Fig. 5A–C).

Statistical analysis indicated that differences were sig-

nificant for the SV values (p < 0.0001). In particular, sig-

nificant variances emerged among: (i) accelerated AVR 

vs. decelerated AVR (p = 0.0007); (ii) accelerated AVR 

vs. accelerated CABG (p < 0.0001); and (iii) accelerated 

AVR vs. decelerated CABG (p < 0.0001) (Fig. 5A). A simi-

lar result emerged for LVEDV (Fig. 5B), LVESV (Fig. 5C), 

and LVDd (Fig. 5G).

Fig. 4 AVR and GABG DeltaAges. A M&P blood DeltaAge. Differences between AVR (n = 74) and CABG (n = 239) in blood DeltaAges (Overall 
Chi-squared test p value = 0.002). B M&P cardiac tissue DeltaAge. AVR (n = 68) patients reveal lower values of DeltaAge compared to CABG 
(n = 224) (Overall Chi-squared test p value = 0.049). C Blood sample size and percentage of DeltaAge distribution according to clinical classification. 
Differences between AVR(decelerated n = 22; normal = 42; and accelerated n = 10) and CABG AVR (decelerated n = 79; normal = 87; and 
accelerated n = 73) have been tested utilizing Post Hoc Analysis for Pearson’s Chi-Squared Test. Significant differences were found when comparing 
normal and accelerated groups (p value 0.006 and 0.011, respectively). D Cardiac tissue distribution has been analyzed utilizing Post Hoc Analysis for 
Pearson’s Chi-Squared Test. Significant differences were found in AVR versus CABG decelerated groups (p value 0.045). AVR distribution: decelerated 
n = 27; normal = 25; and accelerated n = 16; CABG distribution: decelerated n = 55; normal = 108; and accelerated n = 61
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Discussion
In this study, we addressed the cardiac-specific biologi-

cal age compared to that of the peripheral blood and 

whether the presence of specific pathophysiological con-

ditions leading to major cardiac surgery influences this 

aspect. The details of our cohort study are reported in 

Table 1.

Since Hannum [15] and Horvath [14] works, multiple 

biological clocks have been developed by screening many 

CpGs with microarrays with or without pyrosequenc-

ing validation [14–17, 24]. Although multi-organs algo-

rithms have already been described [14], they are almost 

exclusively based on analyzing DNA samples originating 

from peripheral blood. However, internal organs may 

have intrinsic features, such as different growth rates 

[8], specific telomere lengths [31], and organ-specific 

variation in the DNA methylation level [32] that might 

influence the epigenetic landscape. For example, despite 

its essential pumping function characterized by sponta-

neous electrical activity and contractility, the heart has 

the least regeneration capacity, with a self-renewal rate 

between 1 and 4% during the entire lifespan [6]. In addi-

tion, the average cardiac telomere length appears more 

extended than that of leukocytes or other internal organs, 

including the kidney and liver, see Additional file 18: Fig. 

S10 [33, 34]. This evidence could be associated with the 

heart’s insufficient regenerative capacity, possibly reduc-

ing telomere attrition. In this context, it is also unknown 

what the cardiac stem cells’ contribution may be. Several 

cardiac precursors with regenerative properties have 

been reported in different cardiac regions, including 

the atria. Overall, they are recognized by some markers 

described as  CD31neg/CD45neg/c-kitpos/Sca-1pos/Abcg-

2pos/PDGF-Ralphapos (see references [4, 35] and bibliog-

raphy therein).

Interestingly, since his seminal work, Horvath postu-

lated that cardiac stem cells could influence the cardiac 

DNAmAge [14]. However, the contribution of resident 

cardiac stem cells to heart bioage remains unclear, par-

ticularly in pathophysiological conditions affecting heart 

function. Further investigation is required to elucidate 

this exciting aspect.

Lastly, in mice, the cardiac tissue seems prone to accu-

mulate methylated cytosines, an epigenetic modification 

enrichment that has been proposed to be associated with 

reduced organ turnover [12, 13, 36]. On the opposite, 

Table 3 The different levels of blood epigenetic age distribution in the risk factors

Inside each risk factor level, the DeltaAge distribution was evaluated for possible differences between AVR and CABG. Notably, most AVR donors with BMI lower than 

30 kg/m2 had normal DeltaAge. On the other hand, a significantly higher percentage of smoker CABG donors had accelerated DeltaAges. Differences between AVR 

and CABG have been tested utilizing post hoc analysis for Pearson’s chi-squared test with p values adjusted for multiple comparisons by the Benjamini–Hochberg p 

correction. Symbols * and ** indicate conditions reaching statistical significance

Blood 
DeltaAge

AVR (n = 74) CABG (n = 239) Ratio AVR/CABG (p value)

Decelerated 
(%)

Normal (%) Accelerated 
(%)

Decelerated 
(%)

Normal (%) Accelerated 
(%)

Decelerated Normal Accelerated

BMI < 30 kg/
m2

25.9 58.6 15.5 36.0 33.7 30.3 0.72 (0.47) 1.7 (0.002)** 0.5 (0.08)

BMI ≥ 30 kg/
m2

43.7 50.0 6.3 25.0 43.7 31.25 1.7 (0.41) 1.14 (1.0) 0.20 (0.1)

Smoker 29.2 62.5 8.3 34.8 31.8 33.3 0.8 (1) 2 (0.01)* 0.25 (0.04)*

No smoker 30.0 54.0 16.0 30.6 41.7 27.8 0.98 (1.0) 1.3 (0.44) 0.6 (0.32)

Table 4 The cardiac epigenetic age distribution in the risk factors’ different levels

Inside each risk factor level, the DeltaAge distribution was evaluated for possible differences between AVR and CABG. Differences between AVR and CABG have been 

tested using Post Hoc Analysis for Pearson’s Chi-Squared Test with p values adjusted for multiple comparisons by the Benjamini–Hochberg p correction. Even if not 

significant, the AVR group presented larger percentages of individuals with decelerated DNAmAge

Cardiac 
tissue 
DeltaAge

AVR (n = 68) CABG (n = 224) Ratio AVR/CABG (p value)

Decelerated 
(%)

Normal (%) Accelerated 
(%)

Decelerated 
(%)

Normal (%) Accelerated 
(%)

Decelerated Normal Accelerated

BMI < 30 kg/
m2

40.7 35.2 24.1 25.3 51.8 22.9 1.6 (0.09) 0.7 (0.10) 1.0 (1.0)

BMI ≥ 30 kg/
m2

35.7 42.9 21.4 22.4 37.9 39.7 1.6 (0.90) 1.1 (1.0) 0.54 (0.60)

Smoker 35.0 30.0 35.0 24.4 45.5 30.1 1.43 (0.94) 0.66 (0.58) 1.1 (1.0)

No smoker 41.67 39.5 18.7 25.0 51.0 24.0 1.7 (0.11) 0.78 (0.58) 0.78 (1.0)
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the blood has a rapid turnover and exhibits a progres-

sive shortening in telomere length that parallels the aging 

process and has been proposed as a valid parameter asso-

ciated with the risk of cardiovascular accidents [37, 38]. 

Thus, in a physiological context, the cardiac muscle’s 

intrinsic mechanical and metabolic features may impact 

the organ-specific aging process differently than in other 

organs.

Here, we propose two different pyrosequencing-

based algorithms tailored to the cardiac and blood tis-

sues and applicable to predicting the blood and cardiac 

DNAmAge in patients undergoing cardiac surgery. 

Their accuracy is in the range of several other algo-

rithms, including those based on evaluating multiple 

CpGs, such as that initially described by Horvath [14]. 

Fig. 5 Echocardiography distinguishes accelerated and decelerated AVR and CABG. At the bottom of each bar, the average value is reported. A SV: 
Stroke volume. No differences between AVR decelerated and CABG groups. However, significant differences arose in AVR accelerated compared 
to the others. B LVEDV: left ventricular end-diastolic volume. No differences between decelerated AVR and the CABG groups. On the other hand, 
the accelerated AVR revealed significant differences compared to all others. C LVESV: left ventricle end-systolic volume, differences emerged in the 
accelerated AVR vs. decelerated AVR and versus accelerated CABG. No differences were detected evaluating S: septal; LPVW: left posterior ventricular 
wall thickness; EF: ejection fraction; and LVSd: left systolic ventricle diameter (panels D, E, F, and H, respectively). Interestingly, panel G shows that 
in the accelerated AVRs, the LVDd: left ventricle diastolic diameter is significantly higher than in the other groups (p < 0.05). *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001
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Specifically, we used 31 CpGs present in 6 previously 

validated age-related genes [16–18, 24].

According to this approach, our analysis showed that 

distinct combinations of some of these CpGs were nec-

essary to define the blood- and cardiac-specific methods 

to determine the individual biological age in the human 

blood and heart with a MAD of 2.78 and 3.46, respec-

tively. Furthermore, applying the new methods to the 

blood and cardiac cohorts of samples showed a good cor-

relation between chronological and predicted ages: R2 =  

0.63 and 0.52, respectively. This approach determined 

an average biological age of 65.9 ± 7.1 for the blood and 

65.9 ± 6.3 for the heart overlapping with the cohort’s 

average chronological age of 66.5 ± 9.7. Consistently, 

in the blood samples from healthy controls, the R2 was 

0.468 with an average chronological age of 57.4 ± 4.8, 

perfectly centered by the predicted age of 56.1 ± 5.2. We 

called these new methods as the M&P blood and cardiac 

clocks. The condition determining the CpG switch in the 

heart and blood is currently unknown; however, it might 

be associated with organ-specific metabolic conditions.

Our results disagree with previous observations report-

ing that the heart has a younger biological age than blood 

[14, 23, 39]. The explanation for the discrepancy might 

rely on i) the limited access to cardiac samples that might 

have reduced the accuracy of these previous analyses, 

ii) the algorithm used in previous works which were not 

tailored to the heart, or iii) on intrinsic cardiac features, 

including telomere length and a different DNA methyla-

tion enrichment [40]. Altogether these variables could 

reflect the presence of peculiar intrinsic cardiac features 

influencing the clock performance.

The new methods were developed using samples from 

donors undergoing cardiac surgery for AVR or CABG. In 

the blood, the M&P clock well predicted the biological 

age compared with the chronological within a MAD of 

2.78, which is one of the lowest values reported among 

the methods based on a reduced number of CpGs [16–

18, 24–26]. In addition, this algorithm discriminated 

between the two groups and correlated with specific risk 

factors (Tables 3, 4). Despite a similar chronological age, 

CABG patients had shorter telomeres than AVR (Addi-

tional file 18: Fig. S10), confirming the acceleration of the 

aging process in whole blood. Regarding the heart, we 

observed that samples from the AVR group had an aver-

age DeltaAge significantly lower than those with CABG 

(Fig.  4A). Furthermore, for the blood samples, CABGs 

presented a risk of exhibiting accelerated DeltaAges more 

than three times higher than AVRs (p = 0.011), while for 

the ischemic heart, the risk of falling into the decelerated 

DeltaAge group was significantly reduced by more than 

half compared to AVRs (p = 0.045) (Additional file  19: 

Table  S9). This evidence suggests epigenetic alterations 

may accumulate in the ischemic heart, pushing toward an 

accelerated DNAmAge.

Investigating whether this distribution was associated 

with specific cardiovascular risk factors, it emerged that 

in the blood, a BMI < 30 kg/m2 characterized most AVR 

donors with normal or decelerated DNAmAge. In con-

trast, smoking history was associated with accelerated 

CABGs. Furthermore, most AVR individuals had normal 

or decelerated cardiac biological age compared to the 

CABG group. However, in our cohort, those AVR with 

an accelerated DNAmAge correlated well with a higher 

LVED, LVES, and stroke volume despite an ejection frac-

tion falling within a range of normality as often reported 

for these patients (Fig. 5).

Understanding whether these findings could be asso-

ciated with specific and intrinsic cardiac differences 

requires further investigation. However, a possibil-

ity to explain the differences emerging between AVR 

and CABG could be related to the different impact of 

mechanical cues on the cellular reprogramming occur-

ring in the ischemic myocardium vs. that of valvular 

patients. In this regard, it is essential to highlight that the 

mechanical decompensation of the heart in valve disease 

is similar to cardiac hypertrophy due to pressure over-

load [41], while patients with CAD are generally prone 

to dilated cardiomyopathy. Since the two pathologic set-

tings differ in the impact of the mechanical load on the 

structure of the myocardium and the myocardial cells 

[42], different epigenetic setups could be established in 

the two conditions [1, 2]. This hypothesis is supported 

by evidence showing that exposure of cells to mechani-

cal cues undergoes specific epigenetic programming [43], 

possibly a consequence of mechanical effects [44] and 

that mechanical-dependent alterations in the nuclear 

shape affect chromatin organization with the acquisition 

of pathological phenotypes [45]. Interestingly, it has been 

recently reported that the YAP/TAZ signaling is involved 

in the negative regulation of cell senescence [46]. This 

observation supports the possibility that changes in car-

diac mechanics could be at the basis of the DNAmAge 

acceleration observed in the AVR subpopulation.

This study has substantial limitations, including the 

low number of samples evaluated, the absence of a con-

trol group of age-matched healthy cardiac samples, and 

the relatively homogeneous distribution of the patient’s 

chronological age limited to a restricted range. This situ-

ation reflects the objective difficulty of obtaining cardiac 

tissue from younger donors. Moreover, the absence of a 

follow-up did not allow for monitoring the evolution of 

the epigenetic modifications occurring after cardiac sur-

gery. In addition, all the cardiac samples were obtained 

from the right atrium and might not reflect the epige-

netic features of other organ districts, precisely that of 
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the left ventricle, which is functionally the most critical 

part of the heart [47]. It is conceivable that many CpGs, 

such as those measurable with a methyl-chip hybridiza-

tion, could provide additional information. Additional 

studies are necessary to address this crucial aspect. Nev-

ertheless, our data provide unprecedented information 

about the cardiac biological age and indicate that no evi-

dent differences exist compared to peripheral blood [39]. 

Finally, evidence is provided that sensitive cardiac and 

blood-based algorithms realized with minimal CpGs are 

simple and suitable for virtually all laboratories, including 

those in a clinical setting.

Furthermore, our cardiac-specific algorithm allowed 

the identification of specific AVR and CABG subpopu-

lations dictating indications for a more intense clinical 

follow-up. Moreover, the novel methods defined a car-

diac-tailored epigenetic clock that shows how the heart’s 

biological age is, on average, in line with the individual 

chronological one. Lastly, the cardiac clock detects a 

population of AVR patients biologically “younger” than 

CABGs [39] and a subgroup of accelerated AVRs pre-

senting structural and functional cardiac alterations, pos-

sibly early signs of heart failure.

Conclusions
In conclusion, we propose that the estimation of 

DNAmAge might be implemented in diagnostic pro-

cedures to personalize the treatment. Specifically, the 

application of this method to the cardiovascular field 

may affect prognosis, treatments, side effects, and mor-

tality rates, significantly benefiting the patient from this 

information.

Material and methods
Patient enrolment

Three hundred eighty-three patients have been enrolled 

from 2019 to 2021 at the Department of Cardiovascular 

and Thoracic Sciences, Fondazione Policlinico Univer-

sitario A. Gemelli IRCCS-Università Cattolica, Rome, 

Italy (protocol number: 46406/18; ID: 2303, date of 

approval December 4, 2018), and informed consent was 

obtained from each patient. All procedures followed 

the principles expressed in the Declaration of Helsinki, 

the institutional regulation, and Italian laws and guide-

lines. Two hundred eighty-nine were coronary aortic 

bypass graft (CABG) surgery, and ninety-four were 

aortic valve replacement (AVR). Two hundred eighty-

eight samples formed the training group to develop the 

new algorithms, and ninety-five were used as a testing 

group. Blood and auricles were obtained after signed 

informed consent from all participants.

DNA extraction from whole blood

QIAmp DNA blood mini kit (Qiagen; cat. 51106) has 

been used to isolate genomic DNA from 200 ul of 

peripheral blood in EDTA in association with auto-

mated QIACube (Qiagen, cat. 9002160) according to 

manufacturer instructions.

DNA extraction from cardiac auricle

Stainless Steel Beads 5  mm (Qiagen; cat. 69989) have 

been used to homogenize cardiac auricles (~ 25  mg). 

Tissue Lyzer (Qiagen; cat. 85600) has been set for 4 min 

at 40 Hz. To samples, 180 ul of ATL buffer (Qiagen, cat. 

939011) and 20 ul of Proteinase K (Qiagen, cat. 91311) 

were added. Then, the samples were incubated at 56 °C 

for 10  min. The DNA extraction has been successfully 

automated by QIACube (Qiagen, cat. 9002160) accord-

ing to manufacturer instructions.

Bisulfite conversion

1 µg of DNA has been used for the conversion with Epi-

tect fast DNA bisulfite (Qiagen, cat. 59824) following 

the manufacturer instructions associated with Rotor-

Gene 2plex HRM (Qiagen, cat. 9001560) and QIACube 

automated system. Then, 2ul of converted DNA was 

quantified with QIAxpert (Qiagen; cat. 9002340).

Polymerase chain reactions

Following the manufacturer’s instructions, PCR reac-

tion mixes have been performed using the PyroMark 

PCR kit (Qiagen, cat. 978103), and 50  ng of bisulfite-

converted DNA has been used for the amplification. 

The PCR protocol was performed as follows: 95  °C for 

15  min of initial denaturation; 95  °C for 30  s of dena-

turation; 56  °C for 30  s of annealing; 72  °C for 30  s of 

elongation and 72  °C for 10  min of final elongation. 

Denaturation, annealing, and elongation have been 

repeated 42 times.

PCR primers:

Name Modification 5′ Sequence (5′ → 3′)

fw_ELOVL2 BIOTIN AGG GGA GTA GGG TAA GTG AGG 

rv_ELOVL2 AAC AAA ACC ATT TCC CCC TAA TAT 

fw_FHL2 TGT TTT TAG GGT TTT GGG AGT ATA G

rv_FHL2 BIOTIN ACA CCT CCT AAA ACT TCT CCA ATC TCC 

fw_ASPA TGT TGA AGA ATA TAT ATA AAA GGT TGT 

rv_ASPA BIOTIN ATC TTA CCC AAA ATT TTC AAA ATC AAA 

fw_ITGA2B AGG AGT TTT GTT TTT AAG GGA TTT AT

rv_ITGA2B BIOTIN AAA CTC TTT AAC CAT TAA AAC TTA A

fw_PDE4C GTA GGA GGA AAA GGG TTA GGA GAG 
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Name Modification 5′ Sequence (5′ → 3′)

rv_PDE4C BIOTIN CCC AAA CCC CTT TCT CTA AC

fw_EDARADD GGA GTT TGT TAT GGA AGA AGT AAT AG

rv_EDARADD BIOTIN ATC CTC CCA CCT ACA AAT TC

Pyrosequencing

The amplicons have been sequenced to check the meth-

ylation level in each CpG site. PyroMark Q24 Advanced 

Reagents (Qiagen, cat. 970902) have been loaded in the 

PyroMark Q24 Cartridge (Qiagen, cat. 979202) following 

the manufacturer instructions, and 5ul of PCR product 

has been added to the reaction mix.

Then, the samples were shacked at Room Temperature 

for 15 min at 1400 rpm.

Successively, the samples underwent the PyroMark 

Q24 Vacuum Station (Qiagen, cat. 9001515) procedure in 

which the target sequences were purified and put into an 

annealing buffer containing the sequencing primer [0,375 

uM].

The sequence 5′ → 3′ of sequencing primers are:

seq_ELOVL2: ACA ACC AAT AAA TAT TCC TAA 

AAC T

seq_FHL2: GGT TTT GGG AGT ATAGT 

seq_ASPA: TGA AGA ATA TAT ATA AAA GGT TGT T

seq_ITGA2B: GGA TTA AGA GTA AAT AGT GTG 

seq_PDE4C: GAA TAG AAG AGT TGT TGG ATG 

seq_EDARADD: TGT TAT GGA AGA AGT AAT AGA 

Then, the plate containing the sequence to analyze and 

the primer was heated at 80  °C for 5  min. Successively, 

the PyroMark Q24 Advanced (Qiagen, cat. 9001514) has 

been set to analyze the following sequences:

ELOVL2: CCR TAA ACR TTA AAC CRC CRC RCR 

AAA CCR AC

FHL2: AGT TAT YGG GAG YGT YGT TTT YGG YGT 

GGG TTT TYG GGY GYG AGT TTY GGAYG 

AGG TTT GGG YGY GG

ASPA: ATT TTT GGA GGA ATT TAT GGG AAT GAG 

TTA ATY GGA GTA TTT TTG GTT AAG TAT 

TGG TTA GAG AAT GGY GTT GAG AT

ITGA2B: TTT AAT GTT GTG TTT AYG TGT GTT 

AGT TTA YGY GGT TAG TTT GAG GAG TTAGG 

PDE4C: YGG ATG GGG YGT YGG GGT TGT YGT 

TAT AGG TGT TTY GGG GTT TT

EDARADD: TTG YGA GAA GAT GTT YGT TGG 

Statistical methods

The whole dataset was randomly divided into a training 

and a testing sample. The testing dataset was built from a 

subsample presenting at least 90% observations and con-

stituted 35% of the total subjects. For both the cardio and 

blood dataset, a multivariable linear model for chrono-

logical age prediction was built based on the methylation 

values of some gene sites. All the considered gene-site are 

reported in additional figures for the cardio and blood 

tissue, respectively, along with the associated p values 

from a univariable model. The two models were built by 

including a subset of variables chosen according to the 

results from three independent selection procedures: a 

stepwise regression (combining both forward and back-

ward selection), the Lasso (Least  Absolute  Shrinkage 

and  Selection  Operator) regression, where the tuning 

parameter lambda was set to the optimum value from a 

30-cross-validation procedure, and the recursive feature 

elimination (RFE) algorithm which tries all possible solu-

tions (up to the maximum number of possible features). 

RFE method also uses a repeated 30-cross-validation 

approach with ten repeats to improve the performance of 

feature selection. Finally, all the procedures were applied 

to a multivariable model, including only the predictors, 

resulting in significance at a p level of 10% in the univari-

able models. Variables were tested both in their linear 

and quadratic form. Only predictors that resulted signifi-

cantly at 10% in at least one procedure entered the final 

multivariable model. The selected model removed the 

predictors, which in the final multivariable model exhib-

ited a p value greater than 0.10. The two models derived 

by the above procedure have been called M&P models. 

Heatmaps were used to summarize the results: cell colors 

represent the entity of the regression coefficients associ-

ated with each predictor; values inside the cells are the 

p values associated with the regression coefficients. The 

models’ performance was evaluated by computing the 

deviations between chronological ages and predicted 

ages; means, medians, trimmed means, and dispersion 

measures such as standard and median absolute devia-

tion (MAD) were reported. The new models (M&P) were 

compared with the Bekaert, Weidner, and Zbiec-Piekar-

ska algorithms. All the comparisons were made by apply-

ing the three known algorithms only to the gene sites 

from the blood samples. The procedure described above, 

adopted for selecting the predictors to be inserted into 

the final model, was compared with the performance of 

a Neural Network (NN) for the regression approach. NNs 

are machine learning algorithms that help predict the 
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response (dependent variable) from many inputs (inde-

pendent variables). Two NNs were built to model the 

chronological age as dependent on the methylation val-

ues of the gene sites from the blood and cardiac tissue. 

For the NN construction, all the analyzed CpGs of all the 

considered genes were included as inputs. The number of 

hidden layers was tuned by using bootstrapping. All the 

analyses were conducted in R (R Core Team 2021. URL 

https:// www.R- proje ct. org/).

Telomere length quantification

The chromosome end has been quantified by PCR Real 

Time of Absolute Human Telomere Length Quantifica-

tion qPCR Assay Kit (ScienCell, cat. 8918) following the 

manufacturer’s instructions. In addition, 2  ng of DNA 

has been used for telomere analysis. The DNA reference 

used for the kb estimation (lot. #30521) presents TL of 

726 ± 70 kb per diploid cell.

Abbreviations

ASPA  Aspartoacylase
AVR  Aortic valve replacement
CABG  Coronary artery bypass graft
CAD  Coronary artery disease
CpG  Cytosine-guanine dinucleotide
CVDs  Cardiovascular diseases
DeltaAge  DNAmAge—chronological age (years)
DNAmAge  DNA methylation age
EDARADD  Ectodysplasin-A receptor-associated adapter protein
EF  Ejection fraction
ELOVL2  Fatty acid elongase 2
FHL2  Four and A half LIM domains 2
ITGA2B  Integrin alpha-IIb
LVDd  Left ventricle diastolic diameter
LVEDV  Left ventricle end-diastolic volume
LVESV  Left ventricle end-systolic volume
LVSd  Left ventricle systolic diameter
M&P  Mongelli and Panunzi
MAD  Mean absolute deviation
NN  Neuronal network
PDE4C  Phosphodiesterase 4C
S  Septum
SV  Stroke volume
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Additional file 1. Figure S1. Blood-specific epigenetic clocks estimated 
by pyrosequencing. Red dots: blood; blue dots: cardiac tissue. Both 
samples underwent the application of already-known blood-based epi-
genetic clock algorithms. A the estimation of biological age (DNAmAge) 
developed by Beakert et al., blood samples are aligned to the bisector, 
while the cardiac tissue samples are not. B The results of the subtraction 
of chronological age to biological age (DeltaAge) after applying Bekaert’s 
formula: blood (mean ± SD)  − 0.29 ± 8.2 years and cardiac tissue − 28.23 
± 11.3 years. C Weidner et al. algorithm. Blood and cardiac tissue samples 
are not aligned with the bisector. D DeltaAge is calculated after Weidner’s 
formula blood + 11.8 ± 13.8 years and cardiac tissue − 8.27 ± 16.6 years. 
E Zbiec-Piekarska et al. biological clock. F DeltaAges calculation after 
applying Zbiec-Piekarska’s DNAmAge algorithm blood  − 8.97 ± 9.3 years 

and cardiac tissue − 31.8 ± 11.6 years. All paired t tests of blood, and 
cardiac tissue DeltaAge reveal a p value < 0.0001.

Additional file 2. Table S1. Correlation between chronological age and 
blood CpG Methylation levels in different datasets. Values in bold refer to 
significant correlations.

Additional file 3. Figure S2. Heat map summarizing analyses of blood 
samples CpGs. A Results for all CpG analyzed in a univariable model. B 
Results from the Lasso regression, Stepwise regression, and Recursive 
feature selection for final model identification. Cell color represents the 
entity of the regression coefficient b for each CpG predicting the increase/
decrease in aging in a univariable (A) and multivariable (B) analysis. Cell 
value represents the p value associated with the respective coefficients 
b. Variable name starting with “Sq.” indicates that the variable enters the 
model in quadric form.

Additional file 4. Table S2. Gene target and CpG were analyzed to 
estimate tissue-specific epigenetic clocks.

Additional file 5. Figure S3. Blood models of epigenetic clocks in train-
ing group in blood and cardiac tissue samples. A M&P model; B Bekaert; C 
Weidner; D Zbiec-Piekarska.

Additional file 6. Figure S4. blood models of epigenetic clocks in the 
blood and cardiac tissue samples testing group. A M&P model; B Bekaert; 
C Weidner; D Zbiec-Piekarska.

Additional file 7. Figure S5. Comparison of blood DeltaAges. The value 
2.78 refers to the MAD of the M&P blood-based epigenetic clock.

Additional file 8. Table S3. Blood models comparison in training, testing, 
and whole sample groups.

Additional file 9. Table S4. Correlation between epigenetic clocks and 
chronological age. The r and R2 of each epigenetic clock are reported.

Additional file 10. Figure S6. Blood of healthy control group (n = 26). 
A Correlation between chronological age (mean ± SD) 57.4 ± 4.8  and 
DNAmAge 56.1 ± 5.2 years estimated by M&P blood formula (paired t test 
> 0.05). B Blood DeltaAge of healthy controls mean ± SD (− 1.34 ± 4.0). 
57.7% of DeltaAge falls within the range of normality (± 2.78); 30.8% of 
volunteers are decelerated, while 11.5% are accelerated.

Additional file 11. Figure S7. Heat map summarizing analyses of cardiac 
samples CpGs. A Results for all CpG analyzed in a univariable model. B 
Results from the Lasso regression, Stepwise regression, and Recursive 
feature selection for final model identification. Cell color represents the 
entity of the regression coefficient b for each CpG predicting the increase/
decrease in aging in a univariable (A) and multivariable (B) analysis. Cell 
value represents the P value associated with the respective coefficients 
b. Variable name starting with “Sq.” indicates that the variable enters the 
model in the quadric form.

Additional file 12. Figure S8. M&P cardiac model in training and testing 
groups. A Chronological versus DNAmAge in the training group; B Chron-
ological versus DNAmAge in the testing group. C comparison of training 
and testing DeltaAges. No differences between cohorts (p value: ns).

Additional file 13. Table S5. Correlation between chronological age and 
cardiac tissue CpG Methylation levels in the different datasets. Values in 
bold refer to significant correlations.

Additional file 14. Table S6. The mean and median of different datasets 
in different epigenetic clocks.

Additional file 15. Table S7. Descriptive statistics of M&P cardiac model 
in training and testing groups. p value training versus testing: ns.

Additional file 16. Figure S9. Diagrams of the Neural Networks 
employed for the blood and cardiac tissue. A Plot of the Neural Network 
for the chronological age prediction from blood CpGs samples. B Plot 
of the Neural Network for the chronological age prediction from cardiac 
CpGs samples. Each node represents an input CpG, while edges represent 
the weights between layers. The thickness of the edge is proportional to 
the magnitude of each weight. Positive weights are plotted as black lines; 
negative weights as grey lines. The Bias nodes cover the same role as an 
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intercept in a regression model. I = input node, O =output node, H = hid-
den node, B = bias weight.

Additional file 17. Table S8. Performance of the NNs for blood and 
cardiac tissue in training, testing, and whole sample groups.

Additional file 18. Figure S10. Telomere length (TL) of blood and cardiac 
tissue of AVR and CABG patients. The telomere length (kb) has been 
estimated by qPCR. Blood AVR TL mean and SD amount at 2.61 ± 0.57 kb; 
CABG blood  TL is  2.42 ± 0.84 kb. Welch’s t test reveals a p value of 0.026. 
On the other hand, no differences arise in cardiac tissue (Welch’s t test 
p = 0.49) in which AVR TL is 4.48 kb ± 1.24 and CABG 4.60 ± 1.77 kb.

Additional file 19. Table S9. Sample size and percentage of DeltaAge 
distribution according to clinical classification. Differences between AVR 
and CABG have been tested utilizing Post Hoc Analysis for Pearson’s Chi-
Squared Test. In blood, significant differences were found when compar-
ing regular and accelerated groups; in the heart, the difference arises in 
the decelerated groups. Overall: Chi-Squared test.
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