223 research outputs found

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line.</p> <p>Methods</p> <p>RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis.</p> <p>Results</p> <p>Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, <it>p = 0.003</it>) and OS (HR = 0.64, 95% CI = 0.44-0.95, <it>p = 0.024</it>) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, <it>p = 0.003</it>) and OS (HR = 0.62, 95% CI = 0.41-0.95; <it>p = 0.028</it>) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, <it>p = 0.002</it>) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, <it>p = 0.017</it>). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted in a decreased sensitivity to cisplatin as demonstrated by increased cell viability and reduced proportion of cells arrested in the G2/M-phase.</p> <p>Conclusions</p> <p>These data demonstrate that RBM3 expression is associated with cisplatin sensitivity <it>in vitro </it>and with a good prognosis in EOC. Taken together these findings suggest that RBM3 may be a useful prognostic and treatment predictive marker in EOC.</p

    Cover to Volume 3

    Get PDF
    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-ÎșB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth

    2R and remodeling of vertebrate signal transduction engine

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.</p> <p><b>Results</b></p> <p>We show that 2R-WGD affected an overwhelming majority (74%) of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-ÎČ ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R) network, and found that hubs (particularly involving negative regulation) were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs).</p> <p><b>Conclusions</b></p> <p>The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis), while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle) tended to be excluded. 2R-WGD set the stage for the emergence of key vertebrate functional novelties (such as complex brains, circulatory system, heart, bone, cartilage, musculature and adipose tissue). A full explanation of the impact of 2R on evolution, function and the flow of information in vertebrate signalling networks is likely to have practical consequences for regenerative medicine, stem cell therapies and cancer treatment.</p

    Tumor-specific HMG-CoA reductase expression in primary premenopausal breast cancer predicts response to tamoxifen

    Get PDF
    ABSTRACT: INTRODUCTION: We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. METHODS: HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. RESULTS: HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as patients with ER-positive or HMG-CoAR-positive tumors (P = 0.035). Stratification according to ER and HMG-CoAR status demonstrated that ER-positive/HMG-CoAR-positive tumors had an improved RFS compared with ER-positive/HMG-CoAR-negative tumors in the treatment arm (P = 0.033); this effect was lost in the control arm (P = 0.138), however, suggesting that HMG-CoAR predicts tamoxifen response. CONCLUSIONS: HMG-CoAR expression is a predictor of response to tamoxifen in both ER-positive and ER-negative disease. Premenopausal patients with tumors that express ER or HMG-CoAR respond to adjuvant tamoxifen

    Inhibiting Metastatic Breast Cancer Cell Migration via the Synergy of Targeted, pH-triggered siRNA Delivery and Chemokine Axis Blockade

    Get PDF
    Because breast cancer patient survival inversely correlates with metastasis, we engineered vehicles to inhibit both the C-X-C chemokine receptor type 4 (CXCR4) and lipocalin-2 (Lcn2) mediated migratory pathways. pH-responsive liposomes were designed to protect and trigger the release of Lcn2 siRNA. Liposomes were modified with anti-CXCR4 antibodies to target metastatic breast cancer (MBC) cells and block migration along the CXCR4-CXCL12 axis. This synergistic approach—coupling the CXCR4 axis blockade with Lcn2 silencing—significantly reduced migration in triple-negative human breast cancer cells (88% for MDA-MB-436 and 92% for MDA-MB-231). The results suggested that drug delivery vehicles engineered to attack multiple migratory pathways may effectively slow progression of MBC

    GABA-A Channel Subunit Expression in Human Glioma Correlates with Tumor Histology and Clinical Outcome

    Get PDF
    GABA (Îł-aminobutyric acid) is the main inhibitory neurotransmitter in the CNS and is present in high concentrations in presynaptic terminals of neuronal cells. More recently, GABA has been ascribed a more widespread role in the control of cell proliferation during development where low concentrations of extrasynaptic GABA induce a tonic activation of GABA receptors. The GABA-A receptor consists of a ligand-gated chloride channel, formed by five subunits that are selected from 19 different subunit isoforms. The functional and pharmacological properties of the GABA-A channels are dictated by their subunit composition. Here we used qRT-PCR to compare mRNA levels of all 19 GABA-A channel subunits in samples of human glioma (n = 29) and peri-tumoral tissue (n = 5). All subunits except the ρ1 and ρ3 subunit were consistently detected. Lowest mRNA levels were found in glioblastoma compared to gliomas of lower malignancy, except for the Ξ subunit. The expression and cellular distribution of the α1, Îł1, ρ2 and Ξ subunit proteins was investigated by immunohistochemistry on tissue microarrays containing 87 gliomas grade II. We found a strong co-expression of ρ2 and Ξ subunits in both astrocytomas (r = 0.86, p<0.0001) and oligodendroglial tumors (r = 0.66, p<0.0001). Kaplan-Meier analysis and Cox proportional hazards modeling to estimate the impact of GABA-A channel subunit expression on survival identified the ρ2 subunit (p = 0.043) but not the Ξ subunit (p = 0.64) as an independent predictor of improved survival in astrocytomas, together with established prognostic factors. Our data give support for the presence of distinct GABA-A channel subtypes in gliomas and provide the first link between specific composition of the A-channel and patient survival

    Trends in cancer of the cervix uteri in Sweden following cytological screening

    Get PDF
    Trends in cervical cancer incidence following the introduction of screening have mostly been studied using cross-sectional data and not analysed separately for squamous cell cancer and adenocarcinomas. Using Swedish nationwide data on incidence and mortality, we analysed trends during more than 3 decades and fitted Poisson-based age-period-cohort models, and also investigated whether screening has reduced the incidence of adenocarcinomas of the cervix. The incidence of reported cancer in situ increased rapidly during 1958–1967. Incidence rates of squamous cell cancer, fairly stable before 1968, decreased thereafter by 4–6% yearly in women aged 40–64, with a much smaller magnitude in younger and older women. An age-cohort model indicated a stable 70–75% reduction in incidence for women born 1940 and later compared with those born around 1923. The incidence of adenocarcinomas doubled during the 35-year study period. The mortality rate increased by 3.6% before 1968 and decreased by 4.0% yearly thereafter. Although a combination of organized and opportunistic screening can reduce the incidence of squamous cell cancer substantially, the incidence of adenocarcinomas appears uninfluenced by screening. © 1999 Cancer Research Campaig
    • 

    corecore