3 research outputs found

    Blockchain Support for Collaborative Business Processes

    Get PDF
    Blockchain technology provides basic building blocks to support the execution of collaborative business processes involving mutually untrusted parties in a decentralized environment. Several research proposals have demonstrated the feasibility of designing blockchain-based collaborative business processes using a high-level notation, such as the Business Process Model and Notation (BPMN), and thereon automatically generating the code artifacts required to execute these processes on a blockchain platform. In this paper, we present the conceptual foundations of model-driven approaches for blockchain-based collaborative process execution and we compare two concrete approaches, namely Caterpillar and Lorikeet

    The CFTR M470V gene variant as a potential modifier of COPD severity: Study of Serbian population

    No full text
    Chronic obstructive pulmonary disease (COPD) is a complex disease influenced by genetic and environmental factors. Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important component of the lung tissue homeostasis, involved in the regulation of the rate of mucociliary clearance. As it is known that certain CFTR variants have consequences on the function of CFTR protein, the aim of this study was to examine the possible role of F508del, M470V, Tn locus, and R75Q variants in COPD development and modulation. Total number of 86 COPD patients and 102 control subjects were included in the study. Possible association between COPD susceptibility, severity, and onset of the disease and allele or genotype of four analyzed CFTR variants was examined. No associations were detected between COPD development, onset of the disease and tested CFTR alleles and genotypes. However, VV470 genotype was associated with mild/moderate COPD stages in comparison to severe/very severe ones (OR = 0.29, 95% CI = 0.11-0.80, p = 0.016). Our study showed that patients with VV470 genotype had a 3.4-fold decreased risk for the appearance of severe/very severe COPD symptoms, and the obtained results indicate that this genotype may have a protective role. These results also suggest the importance of studying CFTR gene as a modifier of this disease
    corecore