
ePubWU Institutional Repository

Claudio Di Ciccio and Alessio Cecconi and Marlon Dumas and Luciano
García-Bañuelos and Orlenys López-Pintado and Qinghua Lu and Jan
Mendling and Marija Ponomarev and An Binh Tran and Ingo Weber

Blockchain Support for Collaborative Business Processes

Article (Published)
(Refereed)

Original Citation:
Di Ciccio, Claudio and Cecconi, Alessio and Dumas, Marlon and García-Bañuelos, Luciano and
López-Pintado, Orlenys and Lu, Qinghua and Mendling, Jan and Ponomarev, Marija and Tran, An
Binh and Weber, Ingo (2019) Blockchain Support for Collaborative Business Processes. Informatik
Spektrum. pp. 1-9. ISSN 1432-122X

This version is available at: http://epub.wu.ac.at/6972/
Available in ePubWU: May 2019

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the publisher-created published version.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/200761959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/6972/
http://epub.wu.ac.at/


HAUPTBEITRAG / BLOCKCHAIN SUPPORT FOR BUSINESS PROCESSES }

Blockchain Support for
Collaborative Business Processes

Claudio Di Ciccio · Alessio Cecconi
Marlon Dumas

Luciano Garćia-Bañuelos
Orlenys López-Pintado · Qinghua Lu

Jan Mendling · Alexander Ponomarev
An Binh Tran · Ingo Weber

Introduction
Collaboration between different organizations is
essential to achieve greater, common goals. Consider
for example a supply chain, where collaboration of
different companies yields a product via the dif-
ferent steps from production to delivery [11]. As of
today, the integration of processes of each involved
party requires extensive information exchange.
This makes the design and management of such
interorganizational business processes difficult.
Furthermore, the multitude of message exchanges
entails data redundancy and lack of full knowledge
of how, when and where tasks have been conducted.
For these reasons, companies still rely on authorized
third parties to mediate and control the execution of
interorganizational business processes.

Blockchain technology offers the unprece-
dented capability to support such processes [10].
The blockchain as a totally ordered data structure
can capture the history and the current state of the
business processes, whose transitions are registered
by the transactions. As it is tamper-proof, the logging
of executed processes cannot be subject to dispute on
counterfeiting actions from process actors or third
parties. Since it is replicated among the nodes in
the network, the information on the process state
can be shared and updated locally to every node,
thus allowing the process participants to monitor
the new process transitions and, if necessary, be
readily prompted to the next action. Other interested
parties such as auditors can inspect past executions
for compliance. The pseudonymity guaranteed by
the protocol enables collaboration in open environ-
ments. The programmability offered by blockchains
such as Ethereum [2] is paramount to implement

the workflow, as smart contracts can encode the
business logic of processes and enforce its rules by
design. Consensus algorithms, thus, create a trust-
worthy infrastructure on top of potentially untrusted
nodes, and smart contracts make for a trusted pro-
cess execution among partially trustable parties.
As a result, although the technology is still novel,
its adoption as a backbone for business process
management systems (BPMSs) is rapidly evolving
towards a general approach for executing business
processes.

In this paper we illustrate how to design and
run interorganizational business processes using
blockchains. In particular, we illustrate the princi-
ples and rationale of the model-driven approach to
business process automation on blockchains and
then report on recent advances in the field.

The remainder of the paper is structured as
follows. In Section “Model-Driven Engineering and
Execution of Blockchain Processes”, we provide the
motivation for our work and provide an overview of

https://doi.org/10.1007/s00287-019-01178-x
© The authors 2019.

Claudio Di Ciccio · Alessio Cecconi · Jan Mendling
Wirtschaftsuniversität Wien,
Vienna, Austria
E-Mail: {claudio.di.ciccio, alessio.cecconi,
jan.mendling}@wu.ac.at

Marlon Dumas · Luciano Garćia-Bañuelos ·
Orlenys López-Pintado
University of Tartu,
Tartu, Estonia
E-Mail: {marlon.dumas, luciano.garcia, orlenyslp}@ut.ee

Qinghua Lu · Alexander Ponomarev · An Binh Tran ·
Ingo Weber
Data61, CSIRO,
Sydney, NSW, Australia
E-Mail: {qinghua.lu, alexander.ponomarev, an.binh.tran,
ingo.weber}@data61.csiro.au

http://crossmark.crossref.org/dialog/?doi=10.1007/s00287-019-01178-x&domain=pdf
https://doi.org/10.1007/s00287-019-01178-x


{ BLOCKCHAIN SUPPORT FOR BUSINESS PROCESSES

Abstract
Blockchain technology provides basic building
blocks to support the execution of collaborative
business processes involving mutually untrusted
parties in a decentralized environment. Sev-
eral research proposals have demonstrated the
feasibility of designing blockchain-based col-
laborative business processes using a high-level
notation, such as the Business Process Model
and Notation (BPMN), and thereon automati-
cally generating the code artifacts required to
execute these processes on a blockchain plat-
form. In this paper, we present the conceptual
foundations of model-driven approaches for
blockchain-based collaborative process execu-
tion and we compare two concrete approaches,
namely Caterpillar and Lorikeet.

how to design interorganizational business processes
for execution on the blockchain. Thereupon, we de-
scribe the support of process execution as provided
by the novel Lorikeet [12] (Section “The Lorikeet
System”) and Caterpillar [8] (Section “The Caterpil-
lar System”) systems. Finally, in Section “Discussion
and Outlook”, we discuss the current status and look
at the future of this research stream.

Model-Driven Engineering
and Execution of Blockchain Processes

Blockchains can operate as decentralized pro-
grammable platforms [15]. Platforms such as
Ethereum [2] allow for the encoding of smart con-
tracts, namely fully executable distributed programs
operating on the blockchain. Smart contracts dictate
how business is to be conducted among contracting
parties. They, thus, naturally allow for the enact-
ment of processes on-chain. The knowledge of
programming languages for blockchain-specific
applications is crucial to understand the behavior
of those programs, which tend to become mono-
lithic algorithms regulating the data to exchange,
the control-flow logic, the access grants and the
business rules.

Working in the blockchain is mostly a preroga-
tive of individuals with such technical knowledge.
Furthermore, existing solutions for business-to-
blockchain services are often tailored to customers
on a case-based approach. Organizations willing to

move the coordination and tracking of the informa-
tion exchange of their inter-organizational business
processes onto the blockchain are thus hampered by
technical skills requirement. Managers and business
analysts should be interfaced through a model-
driven approach, thus reducing the need to know
encoding language details to create, manage and ver-
ify smart contracts underpinning the collaborative
processes [16, Ch. 1].

In traditional business process management,
this abstraction has long been established through
processes notations like BPMN [4]. A modern BPMS
lets the user define and manage a process through
high-level notation. The system then manages the
implementation details, thus hiding the stream-
line between the high-level design language and
the software code behind the executable process. At
the time of writing, such an abstraction has not yet
been achieved for the blockchain. With blockchains,
the problem is twofold: on the one hand, there is
the need for abstracting the design from the imple-
mentation of smart contracts; on the other hand,
a framework for their integration with processes is
yet to be defined. The preference is to not introduce
yet another process modeling language but to rely on
existing established ones extended with blockchain
features.

The design of smart contracts should be compre-
hensible, fast, reliable and verifiable. The automated
generation of smart contracts code as interfaces to
business processes can allow for faster prototyp-
ing and inspection already at the level of models.
This would diminish the hindrance to the alignment
between the expected behavior of the business pro-
cess, and its implementation as supported by the
blockchain. This solution would bring a higher de-
gree of customizability than a catalogue of contract
templates, such as the ones offered by the Corda
blockchain.

To answer that call for standardization, different
proposals are emerging from academia and industry.
These proposals attempt to apply already existing in-
terorganizational process representations, including
process choreographies [9, 14] and orchestration
diagrams [8] from the BPMN standard.

Figure 1 depicts a choreography diagram,
namely a particular type of process representation
focused on the information flow between organi-
zations, rather than on the internal workflows of
each actor. The parties in a collaborative business



Fig. 1 A process choreography diagram

Fig. 2 The process in Fig. 1 as a collaboration diagram [14]

process cooperate through message exchanges. The
blockchain records these messages and checks or en-
forces that these exchanges occur in a certain order.
The process of each party remains off-chain and is
hidden from the other actors.

An orchestration diagram such as the one in
Fig. 2 details the individual processes of the partic-
ipants. Communications are depicted as in-bound

or out-bound message exchanges occurring when
certain activities are performed. The blockchain
is the shared process execution platform where
every party executes their sub-processes and send
or receive messages within the orchestration.

In the following sections, we present two novel
examples of systems enacting processes on the
blockchain: Lorikeet and Caterpillar. Both sys-



{ BLOCKCHAIN SUPPORT FOR BUSINESS PROCESSES

Fig. 3 The software architecture of Lorikeet

tems are based on the Ethereum blockchain and
allow for smart contract deployment on public,
private or permissioned blockchains. The for-
mer uses the blockchain as the message exchange
mechanism for process choreographies, while
the latter deploys the entire collaborative process
on-chain.

The Lorikeet System

Overview and Design Principles
Lorikeet is a model-driven engineering (MDE) tool
for the development of blockchain applications in
the space of business processes and asset control.
Management of assets is considered to be the first
“killer application” of the blockchain, starting with
fungible assets like cryptocurrency (Bitcoin, Ether,
etc.) and tokens (second-tier coins that are managed
on existing blockchain networks like Ethereum, such
as Golem or Gnosis). Business processes that man-
age nonfungible assets (e. g., by transferring cars
or land titles) are a promising application domain
for blockchains. Unlike fungible assets, nonfungi-
ble assets can be highly individualized, which can
introduce inefficiencies and uncertainty, leading to
counterparty risks. The management of nonfungible
assets traditionally relies on a centralized trusted
authority, which again causes trust issues. A system
that enables the automation of business processes on
the blockchain, therefore, should not overlook the
aspects pertaining to asset management.

Lorikeet can automatically produce blockchain
smart contracts from business process models
and asset data schemata. Lorikeet incorporates
the registry editor Regerator [13] and implements
the BPMN translation algorithms from both [14]
and [5]. In a traditional BPMS, the process model is
the artifact or blueprint which is enacted. In con-
trast, Lorikeet creates the code that implements
the process, and the code is subsequently executed.
The generated code can be reviewed, adapted or
augmented before execution. This feature supports
the potential need for building trust into the smart
contracts generated and helps technical experts
understand the code. Furthermore, it allows for
rapid prototyping at the beginning and later ex-
tension toward a production system. Finally, MDE
allows for amendment of the code beyond the ex-
pressiveness of process model notations. It is an
entirely separate tool from Caterpillar [7], which
we describe in the next section. Lorikeet is in com-
mercial use by Data61 and has been applied in
numerous industry projects. A demonstration pa-
per [12] outlines the tool architecture and usage.
The content of this section is partly based on that
publication.

Architecture
Lorikeet is a well-evaluated tool that is used for cre-
ating blockchain smart contracts in industry and
academia. Figure 3 illustrates the architecture of
Lorikeet, which consists of a modeler user interface



Fig. 4 A screenshot of the Lorikeet business process modeler

(UI, shown in Fig. 4), and back-end components
including the BPMN translator, Registry generator
and Blockchain trigger.

The modeler UI component is presented as
a web application for users to build business pro-
cess and registry models. Business processes are
modeled in BPMN 2.0. Lorikeet extends that stan-
dard to support representation of, and interaction
with, registries in the BPMN process model. The
extension comprises two new elements, namely Reg-
istryReference and ActionInvocation, in terms of
new graphical notations and new XML attributes.
A RegistryReference represents an asset data store
on a blockchain, while an ActionInvocation shows
the asset registry action to invoke. On the registry
side, the registry modeler provides a form for users
to fill in the registry model input. The registry model
consists of four parts, including basic information
(registry name, description, user-defined data fields
and their types), registry type (single or distributed),
basic CRUD operations and advanced operations
(record lifecycle management and foreign key).
Specifically, an access control policy is provided
to regulate the registry manipulations. Process in-
stances can also manipulate the registry records.
For an action invocation from the process instance
to the registry, changes to the registry record are
finalized only after the execution of the process step

logic is completed. Since registry actions could fail,
there is a check box on Lorikeet’s user interface for
atomic behavior across registry actions and busi-
ness process tasks: if marked as atomic, the registry
update and the process state change either both fail
or succeed.

The back-end components, including the BPMN
translator, Registry generator, and Blockchain trig-
ger, are built to adhere to a microservice-based
architecture and are deployed independently as
Docker containers. The BPMN translator automat-
ically generates Solidity smart contracts from the
aforementioned BPMN models. The smart contracts
include the information to call registry functions
and to instantiate and execute the process model.
The Registry generator creates Solidity smart con-
tracts as well, based on registry models that provide
information on the data structure, registry types,
plus basic and advanced operations. Users can
then deploy the smart contracts on the blockchain.
The Blockchain trigger communicates with an
Ethereum blockchain node and handles compila-
tion, deployment and interaction with Solidity smart
contracts.

The BPMN and registry modeler UI interacts
with the back-end microservices via an API gate-
way. The API gateway forwards API calls from the
modeler UI, such as translating a BPMN model,



{ BLOCKCHAIN SUPPORT FOR BUSINESS PROCESSES

to the corresponding microservice. Figure 4 de-
picts the business process modeler UI of Lorikeet.
It is split into two panels: one for modeling pro-
cesses in BPMN, on the left-hand side, and one
showing the source code, on the right. Once the
user applies changes to the BPMN model, the
corresponding Solidity smart contract code is
altered correspondingly at design time. The ap-
pearance and concept of the registry modeler UI
is similar to the business process modeler UI.
Lorikeet has been used within international col-
laborations with academics and industry partners.
A screencast demonstrating the usage of the Lori-
keet tool can be found at https://drive.google.com/
open?id=1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U.

The Caterpillar System

Overview and Design Principles
Caterpillar’s aim is to enable its users to build na-
tive blockchain applications to enforce the correct
execution of collaborative business processes start-
ing from a BPMN process model. In this context,
the meaning of “native” is that code artifacts de-
ployed on the blockchain encode all the execution
logic captured in the process model. Specific-
ally, Caterpillar aims at fulfilling the following
three design principles [8]. First, the collabora-
tive process is modeled as if all the parties shared
the same process execution infrastructure (the
blockchain). Accordingly, the starting point for
implementing a collaborative business process
is a single-pool BPMN process model and not
a collaborative process model or a choreography
model where parties communicate via message
exchanges. Second, the full state of the process in-
stance and of its subprocess instances is recorded
on the blockchain. All the metadata required in
order to retrieve the links between a given pro-
cess instance and its related subprocess instances
are also recorded on the blockchain. Third, the
execution of a process instance can proceed even
if all the off-chain components of Caterpillar are
unavailable.

To achieve these principles, Caterpillar trans-
lates a BPMN process model into a set of smart
contracts, which can enforce the business process
without making assumptions about any of the off-
chain components that trigger transactions on these
contracts. While Caterpillar comes with off-chain

components for deploying, triggering and monitor-
ing business processes, these off-chain components
are optional. Parties can, thus, either directly in-
voke the smart contract transactions without going
through Caterpillar’s off-chain components or im-
plement their own runtime. Accordingly, multiple
instances of the off-chain runtime component may
be running simultaneously (e. g., one instance per
participant).

Architecture
The architecture of Caterpillar comprises three
layers, as shown in Fig. 5. The lower layer, namely the
On-Chain Runtime, implements the process execu-
tion logic as a set of smart contracts spread across
five components. The central component of this
layer, namely the Workflow Handler, encodes the
control-flow perspective of the process. This com-
ponent is responsible for determining which tasks
(work items) are enabled within a given process in-
stance. On the right-hand side, the Service Bridge
and Worklist Handler manage the interactions with
external applications and users and validate the data
produced by the execution of a task. The fourth com-
ponent, Contract Factories, provides a configuration
mechanism to create new instances of a process.
For example, a Factory establishes which worklist
is used by the users to interact with the process or
how a process must be bound to a subprocess in
the process hierarchy. Finally, the Runtime Registry
is a smart contract that keeps track of the process
instances and their relation with other contracts
in the On-Chain Runtime. The Runtime Registry is
a critical component of the architecture, as it al-
lows for the recovery of the status of any process
instance, independently of any application mon-
itoring the process off-chain. The Ethereum Log
provides a medium for interaction between off-
chain and on-chain components. For example, as
the execution of a task must be mined as a transac-
tion in the blockchain, an event can be emitted in
the log to notify the external components that the
miners accepted the execution. Finally, the Process
Repository stores and provides access to compi-
lation artifacts and metadata required to deploy
the smart contracts and tracking the process in-
stances off-chain. Unlike the On-chain Runtime and
the Ethereum Log, the Process Repository is stored
off-chain in other decentralized networks like the
InterPlanetary File System (IPFS), which provides

https://drive.google.com/open?id=1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U
https://drive.google.com/open?id=1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U


Fig. 5 The software architecture of Caterpillar

tamper-resilient storage but at a lower cost than the
Ethereum blockchain.

The middle layer, namely the Off-Chain Run-
time, provides a means for external applications to
interact with the components of the bottom layer in
a service-oriented fashion. The Off-Chain Runtime
consists of five components. From left to right, the
first one is the BPMN Compiler, which is responsible
for translating the BPMN models into smart con-
tracts. In a second step, the BPMN Compiler interacts
with a standard Solidity Compiler to produce the
metadata (i. e., EVM bytecode and ABI definitions)
required for the deployment of the smart contracts in
Ethereum. The Deployment Mediator is responsible
for creating new instances of the process. In addition,
the Deployment Mediator triggers the compilation of
a model and serves to (re)bind process contracts,
factories, worklists and services, not necessarily

produced by Caterpillar but relying on the structure
outlined by its interfaces. The Execution Monitor
component allows for the querying of the process
execution state (e. g., which tasks are enabled to be
executed and to execute such tasks). Last, the Event
Monitor is a listener component for events emitted in
the Ethereum Log, which pushes notifications to the
Execution Monitor or other external applications.

The top layer, namely the Web Portal, exposes
the functionalities of the Off-Chain Runtime compo-
nents to end users (e. g., the process stakeholders).
The Web Portal provides three panels. First, the
Modeling Panel allows drawing or uploading BPMN
models which are deployed later via the Deployment
Mediator. Second, the Configuration Panel supports
the binding/rebinding of relations on the process
contracts already deployed. Last, the Execution
Panel, depicted in Fig. 6, offers a visual representa-



{ BLOCKCHAIN SUPPORT FOR BUSINESS PROCESSES

Fig. 6 A screenshot of the Caterpillar execution panel

tion of the process status and allows for the execution
of tasks.

Discussion and Outlook
In this paper, we analyzed the current state of the
art for the model-driven design and implementa-
tion of blockchain-based process execution and
monitoring – the first research challenge in [10].
In order to ground the analysis, we presented two
research prototypes in the field, namely Caterpil-
lar and Lorikeet. Table 1 compares the features of
these two systems. They share the common aim of
exploiting the features of blockchain technology
to ensure that a collaborative business process, in-
volving untrusted parties, abides to a given BPMN
process model. Moreover, they both rely on com-
piling a BPMN process model into Solidity smart
contracts, with the difference that Caterpillar addi-
tionally provides predefined runtime components
that are packaged together with the compiled code.
Lorikeet supports asset control and access control

Table
1

Features of Lorikeet and Caterpillar

Lorikeet Caterpillar

Model execution approach MDE (code generation) MDE (code generation)
BPMN elements support Medium High
Discovery of incorrect behavior Supported Supported
Sequence enforcement Supported Supported
Participant selection Predefined N/A
Data sharing Mixed All
Asset control Supported Not supported
Access control Supported Not supported

to restrict access to operations and data, whereas
Caterpillar, in its current version, is focused on
control-flow aspects. On the other hand, Caterpil-
lar provides almost full coverage of the control-flow
perspective of BPMN, whereas Lorikeet provides
limited support.

Both Lorikeet and Caterpillar are focused on
BPMN-style process models. Other proposals have
investigated the possibility of modeling blockchain-
based collaborative process models using alternative
paradigms such as artifact-centric process model-
ing [6]. The advancements brought about by those
endeavors have already facilitated applications such
as the automated tracking of process instances on
the blockchain [3] and will aid more advanced
tasks, like automated discovery and auditing for
blockchain-based processes.

Important issues to resolve for future studies
mainly pertain to the connection between real-
world objects and the digital space of blockchains.
Indeed, business processes often have a tight bond



with physical assets and resources. Therefore, up-
dates on their status should be notified within the
blockchain space, and commands triggered from
smart contracts may need to be conveyed outwards
to actually modify their status. To that extent, the
role of in-bound and out-bound oracles seem promi-
nent. Studies on the requirements that they have to
meet in this context and investigations on their in-
tegration with existing approaches, are, therefore,
paramount. Another aspect to be examined is that
transactions recorded in the most recent blocks
cannot be taken for granted, as blockchains guar-
antee only eventual consistency as long as Proof of
Work is the main consensus model. This fact col-
lides with the expenses or hurdles that an off-chain
rollback or compensation might require, should
commands be executed on the physical world based
on transactions from forks that are no longer valid.
By the same line of reasoning, engineering the data
management is key in the context of process au-
tomation, and even more so when blockchains come
into play. The trade-off between on-chain and off-
chain data involves both governance and pragmatic
aspects. On the one hand, the storage of process
data on-chain entails higher gas costs and poses
security threats. On the other hand, resorting to
off-chain data signifies the potential renouncement
of tamper-proof, signed recordings, and looser
links between process flows and data flows. Ei-
ther way, studies should be conducted to address
by design the privacy concerns that arise when
sensitive data are stored in the context of process
execution [1].

As outlined in [10], the research communities
involved will engage in endeavors in diverse di-
rections, including not only the aforementioned
technical ones, but also regarding the strategic deci-
sions of the organizations embracing the blockchain
technology to implement their interorganizational
processes. With this paper, by proposing nascent
conceptual foundations of model-driven approaches
for blockchain-based collaborative process execu-
tion, we have reported on the initial, promising
steps toward overcoming the many challenges that
lie ahead of scientific investigators.

Open Access. This article is distributed under the
terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original
author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes
were made.

Funding. Open access funding provided by Vienna
University of Economics and Business (WU).

References
1. Basin D, Debois S, Hildebrandt T (2018) On purpose and by necessity: compliance

under the GDPR. In: FC. Springer, Berlin Heidelberg
2. Dannen C (2017) Introducing Ethereum and Solidity: Foundations of Cryptocur-

rency and Blockchain Programming for Beginners. Apress
3. Di Ciccio C, Cecconi A, Mendling J, Felix D, Haas D, Lilek D, Riel F, Rumpl A,

Uhlig P (2018) Blockchain-based traceability of inter-organisational business
processes. In: BMSD. Springer, Cham, pp 56–68

4. Dumas M, La Rosa M, Mendling J, Reijers HA (2018) Fundamentals of business
process management. 2nd edn. Springer, Berlin Heidelberg

5. Garćia-Bañuelos L, Ponomarev A, Dumas M, Weber I (2017) Optimized execution
of business processes on blockchain. In: BPM. Springer, Cham, pp 130–146

6. Hull R, Batra VS, Chen Y, Deutsch A, Heath III FFT, Vianu V (2016) Towards
a shared ledger business collaboration language based on data-aware processes.
In: ICSOC. Springer, Cham, pp 18–36

7. López-Pintado O, Garćia-Bañuelos L, Dumas M, Weber I (2017) Caterpillar:
A blockchain-based business process management system. In: BPM Demos. CEUR-WS

8. López-Pintado O, Garćia-Bañuelos L, Dumas M, Weber I, Ponomarev A (2018)
CATERPILLAR: A business process execution engine on the Ethereum blockchain.
Technical report. http://arxiv.org/abs/1808.03517

9. Madsen MF, Gaub M, Høgnason T, Kirkbro ME, Slaats T, Debois S (2018) Collab-
oration among adversaries: Distributed workflow execution on a blockchain. In:
FAB

10. Mendling J, Weber I, van der Aalst WMP, vom Brocke J, Cabanillas C, Daniel F,
Debois S, Di Ciccio C, Dumas M, Dustdar S, Gal A, Garćia-Bañuelos L, Governa-
tori G, Hull R, La Rosa M, Leopold H, Leymann F, Recker J, Reichert M, Reijers HA,
Rinderle-Ma S, Solti A, Rosemann M, Schulte S, Singh MP, Slaats T, Staples M,
Weber B, Weidlich M, Weske M, Xu X, Zhu L (2018) Blockchains for business pro-
cess management – challenges and opportunities. ACM Trans Manag Inf Syst
9(1):4:1–4:16

11. Snyder LV, Shen ZJM (2011) Fundamentals of supply chain theory. Wiley,
Hoboken

12. Tran AB, Lu Q, Weber I (2018) Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management. In: BPM
Demos. CEUR-WS, pp 56–60

13. Tran AB, Xu X, Weber I, Staples M, Rimba P (2017) Regerator: a registry generator
for blockchain. In: CAiSE Forum. CEUR-WS, pp 81–88

14. Weber I, Xu X, Riveret R, Governatori G, Ponomarev A, Mendling J (2016) Un-
trusted business process monitoring and execution using blockchain. In: BPM.
Springer, Cham, pp 329–347

15. Wood G (2017) Ethereum: A secure decentralised generalised transaction ledger
eip-150 revision (759dccd – 2017-08-07). https://ethereum.github.io/yellowpaper/
paper.pdf. Accessed: 2018-01-03

16. Xu X, Weber I, Staples M (2019) Architecture for blockchain applications.
Springer, Berlin Heidelberg

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://arxiv.org/abs/1808.03517
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Model-Driven Engineering and Execution of Blockchain Processes
	The Lorikeet System
	Overview and Design Principles
	Architecture

	The Caterpillar System
	Overview and Design Principles
	Architecture

	Discussion and Outlook
	References

