24 research outputs found

    Additive manufacturing of solid diffractive optical elements via near index matching

    Full text link
    Diffractive optical elements (DOEs) have a wide range of applications in optics and photonics, thanks to their capability to perform complex wavefront shaping in a compact form. However, widespread applicability of DOEs is still limited, because existing fabrication methods are cumbersome and expensive. Here, we present a simple and cost-effective fabrication approach for solid, high-performance DOEs. The method is based on conjugating two nearly refractive index-matched solidifiable transparent materials. The index matching allows for extreme scaling up of the elements in the axial dimension, which enables simple fabrication of a template using commercially available 3D printing at tens-of-micrometer resolution. We demonstrated the approach by fabricating and using DOEs serving as microlens arrays, vortex plates, including for highly sensitive applications such as vector beam generation and super-resolution microscopy using MINSTED, and phase-masks for three-dimensional single-molecule localization microscopy. Beyond the advantage of making DOEs widely accessible by drastically simplifying their production, the method also overcomes difficulties faced by existing methods in fabricating highly complex elements, such as high-order vortex plates, and spectrum-encoding phase masks for microscopy

    Single-molecule visualization of DNA G-quadruplex formation in live cells.

    Get PDF
    Substantial evidence now exists to support that formation of DNA G-quadruplexes (G4s) is coupled to altered gene expression. However, approaches that allow us to probe G4s in living cells without perturbing their folding dynamics are required to understand their biological roles in greater detail. Herein, we report a G4-specific fluorescent probe (SiR-PyPDS) that enables single-molecule and real-time detection of individual G4 structures in living cells. Live-cell single-molecule fluorescence imaging of G4s was carried out under conditions that use low concentrations of SiR-PyPDS (20 nM) to provide informative measurements representative of the population of G4s in living cells, without globally perturbing G4 formation and dynamics. Single-molecule fluorescence imaging and time-dependent chemical trapping of unfolded G4s in living cells reveal that G4s fluctuate between folded and unfolded states. We also demonstrate that G4 formation in live cells is cell-cycle-dependent and disrupted by chemical inhibition of transcription and replication. Our observations provide robust evidence in support of dynamic G4 formation in living cells.Supported by programme grant funding from Cancer Research UK (C9681/A18618, S.B.) core funding from Cancer Research UK (C14303/A17197, S.B.), a Royal Society University Research Fellowship (UF120277 to S.F.L.), Research Professorship (RP150066 to D.K.), a EPSRC (EP/L027631/1 to D.K.) and a BBSRC David Phillips Fellowship (BB/R011605/1 to M.D.A

    A cell topography-based mechanism for ligand discrimination by the T cell receptor.

    Get PDF
    The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.This work was funded by The Wellcome Trust, the UK Medical Research Council, the UK Biotechnology and Biological Sciences Research Council and Cancer Research UK. We thank the Wolfson Imaging Centre, University of Oxford, for access to their microscope facility. We would like to thank the Wellcome Trust for the Sir Henry Dale Fellowship of R.A.F. (WT101609MA), the Royal Society for the University Research Fellowship of S.F.L. (UF120277) and acknowledge a GSK Professorship (D.K.). We are also grateful to Doug Tischer (UCSF, US) and Muaz Rushdi (Georgia Tech, US) for their critical comments on the manuscript

    Local rheology of lubricants in the elastohydrodynamic regime

    No full text
    Numerous models have been developed to describe the viscosity and rheology of lubricants in elastohydrodynamic (EHD) lubrication, but little experimental and theoretical work has been done on the flow of lubricants. Due to the high pressures in a tribological contact it is likely that lubricants may undergo structural changes, which would significantly affect their flow. Photobleached-fluorescence imaging velocimetry was applied to a glass-glass EHD contact, lubricated with the oligomer polybutene, which was doped with fluorescent dye. The technique involved tagging a volume inside the contact, by making it dark compared to its surroundings. A model was developed to solve for the through-thickness velocity profile using the experimental data and the technique was validated experimentally using a parallel plate Couette setup. Velocity profiles of polybutene in an EHD contact were measured under various conditions. Three distinct rheological responses could be observed. At low pressures, the velocity profile was mostly linear. At a critical pressure, a low shear rate plug formed in the centre of the film, possibly due to pressure-induced glass transition of the lubricant. The application of a low surface energy coating caused the lubricant to slip at the interface, depending on the applied pressure. The velocimetry studies were supported by film thickness and friction measurements. Laser-induced fluorescence was used to measure the film thickness, showing that the plug flow of polybutene coincided with an anomalous increase in film thickness, while the occurrence of boundary slip resulted in reduced film thickness. Friction measurements showed that plug flow had negligible effects on friction. Boundary slip however caused a decrease in friction (up to 70 %). Results suggest that lubricant flow in an elastohydrodynamic contact is non-trivial and deserves more consideration than is typically given. Direct flow measurements could be useful to elucidate the complex relationship between film thickness, friction and flow.Open Acces

    4D imaging reveals stage dependent random and directed cell motion during somite morphogenesis.

    Get PDF
    Somites are paired embryonic segments that form in a regular sequence from unsegmented mesoderm during vertebrate development. Although transient structures they are of fundamental importance as they generate cell lineages of the musculoskeletal system in the trunk such as cartilage, tendon, bone, endothelial cells and skeletal muscle. Surprisingly, very little is known about cellular dynamics underlying the morphological transitions during somite differentiation. Here, we address this by examining cellular rearrangements and morphogenesis in differentiating somites using live multi-photon imaging of transgenic chick embryos, where all cells express a membrane-bound GFP. We specifically focussed on the dynamic cellular changes in two principle regions within the somite, the medial and lateral domains, to investigate extensive morphological transformations. Furthermore, by using quantitative analysis and cell tracking, we capture for the first time a directed movement of dermomyotomal progenitor cells towards the rostro-medial domain of the dermomyotome, where skeletal muscle formation initiates
    corecore