72 research outputs found
Complete Electric Dipole Response and the Neutron Skin in 208Pb
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0◦ is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness rskin = 0.156+0.025 −0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars
Pygmy dipole resonance in 208Pb
Scattering of protons of several hundred MeV is a promising new spectroscopic
tool for the study of electric dipole strength in nuclei. A case study of 208Pb
shows that at very forward angles J^pi = 1- states are strongly populated via
Coulomb excitation. A separation from nuclear excitation of other modes is
achieved by a multipole decomposition analysis of the experimental cross
sections based on theoretical angular distributions calculated within the
quasiparticle-phonon model. The B(E1) transition strength distribution is
extracted for excitation energies up to 9 MeV, i.e., in the region of the
so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows
sensitivity to the underlying structure of the E1 transitions, which allows for
the first time an experimental extraction of the electromagnetic transition
strength and the energy centroid of the PDR.Comment: submitted to Phys. Rev.
Complete electric dipole response and the neutron skin in 208Pb
A benchmark experiment on 208Pb shows that polarized proton inelastic
scattering at very forward angles including 0{\deg} is a powerful tool for
high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1)
modes in nuclei over a broad excitation energy range to test up-to-date nuclear
models. The extracted E1 polarizability leads to a neutron skin thickness
r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys.
Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its
density dependence, relevant to the description of neutron stars.Comment: 5 pages, 5 figures, revised mansucrip
Low-energy electric dipole response in 120Sn
The electric dipole strength in 120Sn has been extracted from proton
inelastic scattering experiments at E_p = 295 MeV and at forward angles
including 0 degree. Below neutron threshoild it differs from the results of a
120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV.
The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and
is more than three times larger than what is observed with the (gamma,gamma')
reaction. This implies a strong fragmentation of the E1 strength and/or small
ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure
Dipole polarizability of 120Sn and nuclear energy density functionals
The electric dipole strength distribution in 120Sn between 5 and 22 MeV has
been determined at RCNP Osaka from a polarization transfer analysis of proton
inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}.
Combined with photoabsorption data an electric dipole polarizability
\alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as
isovector observable par excellence carries direct information on the nuclear
symmetry energy and its density dependence. The correlation of the new value
with the well established \alpha_D(208Pb) serves as a test of its prediction by
nuclear energy density functionals (EDFs). Models based on modern Skyrme
interactions describe the data fairly well while most calculations based on
relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure
A high energy-resolution zero degree facility for (p,p′) and (p,t) reactions
Medium-energy hadronic scattering and reactions at zero degrees are very selective to excitations with low angular momentum transfer. Only a few facilities exist worldwide where high energy-resolution measurements of this nature can be performed. The K600 Zero-Degree Facility at iThemba LABS, South Africa, was recently successfully developed. Measurements were performed for inelastic proton scattering at an incident energy of 200 MeV for targets ranging from ²⁷Al to ²⁰⁸Pb. Excitation energy-resolution of 50 keV (FWHM) was achieved. A reasonable background subtraction procedure allows for the extraction of excitation energy spectra with low background. Measurements of the (p,t) reaction at 100 MeV benefit from a large difference in magnetic rigidity between the reaction products and primary particles, resulting in almost background-free spectra with excitation energy-resolution of 32 keV (FWHM)
Linear Polarization of the High-Energy End of Bremsstrahlung in Electron-Atom Collisions
We report on the effects of electron spin polarization on the bremsstrahlung polarization properties occuring in collisions of polarized electrons with thin target foils
- …