24 research outputs found

    Dyslipidemia and changes in lipid profiles associated with rheumatoid arthritis and initiation of anti–tumor necrosis factor therapy

    Full text link
    Objective To investigate the frequency of lipid testing in clinical practice and to explore the relationship between rheumatoid arthritis (RA), dyslipidemia, and other cardiovascular (CV) risk factors with RA treatment. Methods Patients in this retrospective database study were ages ≥18 years and had ≥2 physician diagnoses for RA or osteoarthritis (OA; comparator group) between March 2004 and March 2008. Outcomes of interest included the percentage of RA and OA patients receiving lipid tests, lipid profiles (total cholesterol, low‐density lipoprotein [LDL] cholesterol, and high‐density lipoprotein [HDL] cholesterol) of RA versus OA patients, and lipid profiles of RA patients before and after initiation with a tumor necrosis factor (TNF) inhibitor. We used multivariable regression to control potential confounders between the cohorts. Results Over a median ≥2‐year followup, fewer RA patients than OA patients had ≥1 lipid test (62.0% [95% confidence interval (95% CI) 61.5–62.5] versus 69.8% [95% CI 69.5–70.1]). Mean total cholesterol and LDL cholesterol were each 4 mg/dl lower in the RA cohort ( P < 0.0001); HDL cholesterol was similar between the cohorts. Across the RA cohort, 25.2% of patients had suboptimal LDL cholesterol levels (≥130 mg/dl). Among RA patients not receiving lipid‐lowering therapy who initiated TNF inhibitor therapy (n = 96), mean total cholesterol and LDL cholesterol increased by 5.4 and 4.0 mg/dl, respectively. Conclusion Patients with RA were less likely to be tested for hyperlipidemia and had more favorable lipid profiles than patients with OA. TNF inhibitor therapy modestly increased all lipid parameters. Additional studies are needed to determine the effect of traditional CV risk factors and inflammation and the impact of biologic agents on CV outcomes in RA patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93521/1/21693_ftp.pd

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Impact of Systemic Inflammation and Autoimmune Diseases on apoA-I and HDL Plasma Levels and Functions

    Get PDF
    The cholesterol of high-density lipoproteins (HDLs) and its major proteic component, apoA-I, have been widely investigated as potential predictors of acute cardiovascular (CV) events. In particular, HDL cholesterol levels were shown to be inversely and independently associated with the risk of acute CV diseases in different patient populations, including autoimmune and chronic inflammatory disorders. Some relevant and direct anti-inflammatory activities of HDL have been also recently identified targeting both immune and vascular cell subsets. These studies recently highlighted the improvement of HDL function (instead of circulating levels) as a promising treatment strategy to reduce inflammation and associated CV risk in several diseases, such as systemic lupus erythematosus and rheumatoid arthritis. In these diseases, anti-inflammatory treatments targeting HDL function might improve both disease activity and CV risk. In this narrative review, we will focus on the pathophysiological relevance of HDL and apoA-I levels/functions in different acute and chronic inflammatory pathophysiological conditions

    Perfluoroalkyl substances (PFASs) in the marine environment: Spatial distribution and temporal profile shifts in shellfish from French coasts

    No full text
    Perfluoroalkyl substances (PFASs) were investigated in filter-feeding shellfish collected from 2013 to 2017 along the English Channel, Atlantic and Mediterranean coasts of France. PFOS (perfluorooctane sulfonate), PFTrDA (perfluorotridecanoic acid), PFTeDA (perfluorotetradecanoic acid), PFDoDA (perfluorododecanoic acid) and PFUnDA (perfluoroundecanoic acid) were detected in more than 80% of samples, thus indicating widespread contamination of the French coastal environment by these chemicals. The distribution of PFAS concentrations showed differences according to sampling locations and years. PFOS was the predominant PFAS in most samples collected from English Channel and Atlantic coasts until 2014, but the opposite was observed in 2015, 2016 and 2017, while perfluoroalkyl carboxylic acids (PFCAs) prevailed in Mediterranean samples in all study years. Among PFCAs, PFTrDA showed the highest maximum (1.36 ng g−1 ww) and median (0.077 ng g−1 ww) concentrations in 2016–2017. Other PFAS median concentrations were within the 0.014 (PFNA) - 0.055 (PFTeDA) ng g−1 ww range. The profiles determined each year in most Mediterranean samples suggest distinctive sources. PFOS median concentrations showed a significant decrease over the study years, from 0.118 to 0.126 ng g−1 ww in 2013–2015 to 0.066 ng g−1 ww in 2016 and 2017. ∑PFCAs showed no trends in concentration ranges over the same years. The shift in PFAS profiles from PFOS to long-chain PFCAs over the study period reflects PFOS production phase-out, combined with continuous inputs of PFCAs into the marine environment. These results provide reference data for future studies of the occurrence of contaminants of emerging concern on European coasts

    Levels and trends of synthetic musks in marine bivalves from French coastal areas

    No full text
    The levels and trends of four bioaccumulative synthetic musks (galaxolide - HHCB, tonalide - AHTN, musk xylene - MX and musk ketone - MK) were investigated in filter-feeding bivalves collected yearly since 2010 at sites of contrasted pressure along the French coasts. Quantification rates were high for all 4 compounds (85-99%), indicating their geographical and temporal extensive occurrence in the French coastal environment. The polycyclic musks HHCB and AHTN prevailed, with median concentrations of 2.27 ng g-1 dw and of 0.724 ng g-1 dw, whilst nitromusks were found 1 to 2 orders of magnitude lower. These levels were in the high range of those encountered for various other CEC families at the same sites and comparable to those from other locations on European coasts. Unlike for the other musks, the accumulation of HHCB was evidenced to be species-specific, with significantly lower levels found in oysters in comparison with mussels, possibly suggesting a higher metabolization in oysters. Geographical differences in musk distribution highlighted the sites under strong anthropogenic pressures and these differences were found to be consistent between years. The HHCB/AHTN ratio proved to be discriminant to explain the relative occurrence of polycyclic musks. The 8-year time series showed that only the now-banned compound MX displayed a significant decrease in most sites, whilst stable concentrations of the other musks suggested consistency in their usage over the last decade. These results provide reference data for future studies of the occurrence of personal care products on European coasts

    Prevalence of per- and polyfluoroalkyl substances (PFASs) in marine seafood from the Gulf of Guinea

    No full text
    PFASs are ubiquitous in the global environment due to their wide use, persistence and bioaccumulation, and are of concern for human health. This study investigated the levels of PFASs in seafood with a view to provide knowledge on the occurrence of PFASs in marine resources and to evaluate seafood safety and human health risk via dietary exposure to coastal communities in the Gulf of Guinea, where there is currently very little data. The sum of targeted PFASs was between 91 and 1510 pg g-l ww (mean 465 ± 313 pg g-l ww), with PFOS and long-chain PFCAs prevailing. The concentrations of PFASs in the three species of croakers were species- and location-dependent, with habitat and anthropogenic pressure as likely drivers of the differences. Significantly higher contamination levels were found in male croakers. The trophic transfer and biomagnification of PFASs from shrimps to croakers was evidenced for PFOS and long-chain PFCAs (with a significant increase of contaminants from the prey to the predator). The calculated estimated daily intakes (EDIs) and hazard ratio (HR) for PFOS in croakers (whole fish and muscles) and shrimp were lower than the European Food and Safety Agency's recommended level for PFOS (1.8 ng kg−1 day−1) and below the HR safety threshold value of 1. From the results, based on present safety limits, PFOS levels in croakers and shrimps from the Gulf of Guinea do not pose immediate health risks to the human population. This study provides the first insight regarding the distribution of PFASs in seafood from the tropical NE Atlantic region of the Gulf of Guinea and highlights the need for further monitoring across the Gulf

    Legacy and emerging organic contaminants in two sympatric shark species from Reunion Island (Southwest Indian Ocean): Levels, profiles and maternal transfer

    No full text
    The contamination of tiger sharks (Galeocerdo cuvier) and bull sharks (Carcharhinus leucas) by legacy persistent organic pollutants (POPs) and emerging organic contaminants was investigated in specimens from Reunion Island (Southwest Indian Ocean) in 2018 and 2019. Contamination levels were determined in the muscle of adult individuals of both sexes in relation to biological and trophic parameters. Maternal transfer was additionally investigated in one set of embryos in each species. Polychlorinated biphenyl (PCB), organochlorinated pesticide (OCP) and perfluoroalkylated substance (PFAS) concentrations were 2597 ± 2969, 785 ± 966 and 267 ± 194 pg g-1 ww, respectively, in bull sharks, and 339 ± 270, 1025 ± 946 and 144 ± 53 pg g-1 ww in tiger sharks. The results highlighted higher PCB contamination, and by the heavier congeners, in adult bull sharks versus tiger sharks. The significant differences found in PCB profiles and concentrations suggest that the two species are exposed to different contamination sources. As bull sharks rely on a more coastal habitat for feeding, their higher contamination by PCBs suggests the occurrence of local PCB sources. DDT concentrations were similar in both species, suggesting a more homogeneous contamination on the scale of the Southwest Indian Ocean. Female bull sharks showed lower OCP and PCB concentrations than males, while this trend was not observed in tiger sharks. The ratio of chlorinated contaminants in muscle between the mother and her embryos was related to molecule hydrophobicity in bull shark but not in tiger shark, suggesting that shark mode of gestation, known to be different in the two species, is a key driver of organic contaminant maternal transfer. Finally, the results show that organic contaminant levels in the studied species were lower than those of other shark species in the Southern Hemisphere, related to the limited urbanization and industrialization of Reunion Island

    Organophosphate esters (OPEs) in the marine environment: Spatial distribution and profiles in French coastal bivalves

    No full text
    Organophosphate esters (OPEs), chemicals widely used in industrial production, electronics and domestic products, have become ubiquitous environmental contaminants. In this study, the levels and spatial distribution of 11 OPEs (aryl, alkyl and halogenated) were investigated in over 100 samples of filter-feeding bivalves collected yearly between 2014 and 2021 at sites of contrasted pressure along the French coasts. OPEs were found in virtually all samples, indicating their widespread spatial and temporal occurrence in coastal bivalves and the relevance of their biomonitoring. The median concentrations were between 0.4 (TMPP) and 4.9 ng g−1 dry weight (TCIPP), with TCIPP, TNBP and EHDPP found at the highest median values. TCEP and TBOEP were not frequently detected overall, but each year, the same sites showed repeatedly high concentrations. Structurally-related OPEs generally correlated, but the geographical distributions were not predictable from known anthropogenic pressures (population in the catchment area, industry), with little comparability with other hydrophobic contaminants. If the relation between sources of OPEs and bioaccumulated levels remains uncertain, local hotspots, rather than riverine/atmospheric transportation, could account for their geographical distribution. A systematic review of the levels of OPEs found in filter-feeding bivalves worldwide revealed comparable levels in our study with those reported elsewhere; however, the levels across and within (when available) studies generally spanned several orders of magnitude, indicating high spatial and temporal heterogeneity. In view of the growing concerns regarding OPEs, this study provides essential reference data for future studies of their occurrence on European coasts and supports the need for a more systematic (bio)monitoring of this class of contaminant
    corecore