708 research outputs found

    The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Full text link
    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.Comment: Received: 11 November 2017, revision received: 31 January 2018, accepted: 31 January 201

    Beyond the current noise limit in imaging through turbulent medium

    Full text link
    Shift-and-add is an approach employed to mitigate the phenomenon of resolution degradation in images acquired through a turbulent medium. Using this technique, a large number of consecutive short exposures is registered below the coherence time of the atmosphere or other blurring medium. The acquired images are shifted to the position of the brightest speckle and stacked together to obtain high-resolution and high signal-to-noise frame. In this paper we present a highly efficient method for determination of frames shifts, even if in a single frame the object cannot be distinguished from the background noise. The technique utilizes our custom genetic algorithm, which iteratively evolves a set of image shifts. We used the maximal energy of stacked images as an objective function for shifts estimation and validate the efficiency of the method on simulated and real images of simple and complex sources. Obtained results confirmed, that our proposed method allows for the recovery of spatial distribution of objects even only 2% brighter than their background. The presented approach extends significantly current limits of image reconstruction with the use of shift-and-add method. The applications of our algorithm include both the optical and the infrared imaging. Our method may be also employed as a digital image stabilizer in extremely low light level conditions in professional and consumer applications.Comment: 8 pages, 4 figure

    Quantum Telescopes: feasibility and constrains

    Full text link
    Quantum Telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly also other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have been already proposed. In this Letter we characterize the predicted performance of Quantum Telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design.Comment: Optics Letters - published after major revisio

    Spontaneous bilateral subdural haematomas in the posterior cranial fossa revealed by MRI

    Get PDF
    A 52-year-old woman treated for acute myeloproliferative disease developed progressive stupor. CT showed obstructive hydrocephalus resulting from unexplained mass effect on the fourth ventricle. MRI revealed bilateral extra-axial collections in the posterior cranial fossa, giving high signal on T1- and T2-weighted images, suggesting subacute subdural haematomas. Subdural haematomas can be suspected on CT when there is unexplained mass effect. MRI may be essential to confirm the diagnosis and plan appropriate treatmen

    Catalog of quasars from the Kilo-Degree Survey Data Release 3

    Get PDF
    We present a catalog of quasars selected from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDS DR3). The QSOs are identified by the random forest (RF) supervised machine learning model, trained on SDSS DR14 spectroscopic data. We first cleaned the input KiDS data from entries with excessively noisy, missing or otherwise problematic measurements. Applying a feature importance analysis, we then tune the algorithm and identify in the KiDS multiband catalog the 17 most useful features for the classification, namely magnitudes, colors, magnitude ratios, and the stellarity index. We used the t-SNE algorithm to map the multi-dimensional photometric data onto 2D planes and compare the coverage of the training and inference sets. We limited the inference set to r<22 to avoid extrapolation beyond the feature space covered by training, as the SDSS spectroscopic sample is considerably shallower than KiDS. This gives 3.4 million objects in the final inference sample, from which the random forest identified 190,000 quasar candidates. Accuracy of 97%, purity of 91%, and completeness of 87%, as derived from a test set extracted from SDSS and not used in the training, are confirmed by comparison with external spectroscopic and photometric QSO catalogs overlapping with the KiDS footprint. The robustness of our results is strengthened by number counts of the quasar candidates in the r band, as well as by their mid-infrared colors available from WISE. An analysis of parallaxes and proper motions of our QSO candidates found also in Gaia DR2 suggests that a probability cut of p(QSO)>0.8 is optimal for purity, whereas p(QSO)>0.7 is preferable for better completeness. Our study presents the first comprehensive quasar selection from deep high-quality KiDS data and will serve as the basis for versatile studies of the QSO population detected by this survey.Comment: Data available from the KiDS website at http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php and the source code from https://github.com/snakoneczny/kids-quasar

    Thalamic Nuclei Clustering on High Angular Resolution Diffusion Images.

    Get PDF
    Thalamic nuclei can be distinguished by their characteristic fiber orientations, which influence the diffusion. Fiber orientations are relatively aligned within a nucleus due to the fact that the cerebrocortical striations within a nucleus all target the same region of cortex. The number of thalamic nuclei reported with histological methods varies with the method employed, although most cyto/myeloarchitec stains identify 14 major nuclei. We present a new approach for thalamic nuclei segmentation on High Angular Diffusion Resolution Images (HARDI), performed with a constrained k-means clustering. As described by John D.Carew[1], it is possible to classify HARDI data based on the shape of the diffusion, thanks to the complex information coming from them. Mette R. Wiegell [2] proposed a thalamic nuclei clustering with k- means on diffusion tensor images, using a combination of a voxel distance and a diffusion tensor distance. In the same way, we use the k-mean algorithm with a weighted sum of two distances to cluster the thalamic nuclei on HARDI data

    Observational Evidence for the Co-evolution of Galaxy Mergers, Quasars, and the Blue/Red Galaxy Transition

    Get PDF
    We compile a number of observations to estimate the time-averaged rate of formation or buildup of red sequence galaxies, as a function of mass and redshift. Comparing this with the mass functions of mergers and quasar hosts, and independently comparing their clustering properties as a function of redshift, we find that these populations trace the same mass distribution, with similar evolution, at redshifts 0<z<~1.5. Knowing one of the quasar, merger, or elliptical mass/luminosity functions, it is possible to predict the others. Allowing for greater model dependence, we compare the rate of early-type buildup with the implied merger and quasar triggering rates as a function of mass and redshift and find agreement. Over this redshift range, observed merger fractions can account for the entire bright quasar luminosity function and buildup of the red sequence at all but the highest masses at low redshift (>~10^11 M_solar at z<~0.3) where 'dry' mergers appear to dominate. This supports a necessary prediction of theories where mergers between gas-rich galaxies produce ellipticals with an associated phase of quasar activity, after which the remnant becomes red. These populations trace a similar characteristic transition mass, possibly reflecting the mass above which the elliptical population is mostly (>~50%) assembled at a given redshift, which increases with redshift over the observed range in a manner consistent with suggestions that cosmic downsizing may apply to red galaxy assembly as well as star formation. These mass distributions as a function of redshift do not uniformly trace the all/red/blue galaxy population, ruling out models in which quasar activity is generically associated with star formation or is long lived in 'old' systems.Comment: 24 pages, 17 figures. Accepted to ApJ. Substantially revised and expanded to match published versio
    corecore