1,108 research outputs found

    Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers

    Get PDF
    Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of H E found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability

    A Stimulated Raman Loss spectrometer for metrological studies of quadrupole lines of hydrogen isotopologues

    Get PDF
    We discuss layout and performance of a high-resolution Stimulated Raman Loss spectrometer that has been newly developed for accurate studies of spectral lineshapes and line center frequencies of hydrogen isotopologues and in general of Raman active transitions. Thanks to the frequency comb calibration of the detuning between pump and Stokes lasers and to an active alignment of the two beams, the frequency accuracy is well below 100 kHz. Over the vertical axis the spectrometer benefits from shot-noise limited detection, signal enhancement via multipass cell, active flattening of the spectral baseline and measurement times of few seconds over spectral spans larger than 10 GHz. Under these conditions an efficient averaging of Raman spectra is possible over long measurement times with minimal distortion of spectral lineshapes. By changing the pump laser, transitions can be covered in a very broad frequency span, from 50 to 5000 cm−1\mathrm{cm^{-1}}, including both vibrational and rotational bands. The spectrometer has been developed for studies of fundamental and collisional physics of hydrogen isotopologues and has been recently applied to the metrology of the Q(1) 1-0 line of H2\mathrm{H_2}

    A stimulated Raman loss spectrometer for metrological studies of quadrupole lines of hydrogen isotopologues

    Get PDF
    We discuss layout and performance of a high-resolution Stimulated Raman Loss spectrometer that has been newly developed for accurate studies of spectral lineshapes and line centre frequencies of hydrogen isotopologues and in general of Raman active transitions. Thanks to the frequency comb calibration of the detuning between pump and Stokes lasers and to an active alignment of the two beams, the frequency accuracy is at a level of 50 kHz. Over the vertical axis the spectrometer benefits from shot-noise limited detection, signal enhancement via multipass cell, active flattening of the spectral baseline and measurement times of few seconds over spectral spans larger than 10 GHz. Under these conditions an efficient averaging of Raman spectra is possible over long measurement times with minimal distortion of spectral lineshapes. By changing the pump laser, transitions can be covered in a very broad frequency span, from 50 to 5000 cm−1, including both vibrational and rotational bands. The spectrometer has been developed for studies of fundamental and collisional physics of hydrogen isotopologues and has been recently applied to the metrology of the Q(1) 1–0 line of H2

    Recent analysis of the ITER ion cyclotron antenna with the TOPICA code

    Get PDF
    Plasma heating in the Ion Cyclotron Range of Frequencies (ICRF) is adopted in most of the existing nuclear fusion experiments and is also one of the three auxiliary heating systems of ITER. Two identical ICRF antennas will be installed in ITER with the aim of delivering 10MW per antenna to the plasma for the baseline design configuration (upgradable to 20 MW/antenna). In order to optimize the feeding circuit and to evaluate and predict the overall performances of an ICRF launcher it is fundamental to perform radio-frequency simulations of the antenna detailed geometry loaded with a realistic plasma, and to extract the antenna input parameters, the electric current on conductors and the radiated field. In this work, we analyze the current ITER ICRF launcher, for the first time including the surrounding cavity between the port plug and the port extension, and a portion of the blanket tiles in the TOPICA code; the geometrical description of the antenna has reached an unprecedented level of accuracy. The ITER ICRF antennas have been the object of a comprehensive analysis, varying the working frequency, the plasma conditions and the poloidal and toroidal phasings between the feeding transmission lines. The performances of the antennas have been documented in terms of input parameters, power coupled to plasma and electric fields, for a reference set of ITER plasma equilibria and assuming a maximum voltage on the system

    Linear and Nonlinear Spectroscopy by a Common-Path Birefringent Interferometer

    Get PDF
    © 1995-2012 IEEE. We introduce a passive common-path interferometer to replace Michelson interferometers in the Fourier-Transform spectroscopy. Our device exploits birefringence to introduce a highly accurate delay between two orthogonal polarization components by continuously varying the material thickness. Due to its inherent delay stability and reproducibility, it can be used even for short wavelengths (down to ∼200 nm) without the need for any active control or position tracking. We first demonstrate its performances in linear spectroscopy, by implementing a spectrometer and a spectrophotometer. We then extend its use to nonlinear spectroscopy and, in combination with lock-in detection at MHz modulation frequencies, illustrate its application to pump-probe spectroscopy with high sensitivity (ΔT/T 500 nm) and to broadband stimulated Raman scattering microscopy in the CH stretching region

    Scanning Electron Microscope Cytochemistry of Blood Cells

    Get PDF
    The backscattered electron imaging (BEI) mode of scanning electron microscopy (SEM) has been applied to study various histo-cytochemical reactions in biological specimens since the early seventies. Due to numerous, recent technical improvements the BEI mode of SEM now belongs to the routine of many SEM laboratories. For cytochemistry, BEI has been mainly used to: visualize intracellular structures and organelles; recognize the different cell types in heterogeneous populations or tissues; study the correlations between enzymatic activities and cell surface features. We have evaluated the most relevant results obtained in the study of blood cells and the possible future applications of these techniques

    A comparison of seismic risk maps for Italy

    Get PDF
    National seismic risk maps are an important risk mitigation tool as they can be used for the prioritization of regions within a country where retrofitting of the building stock or other risk mitigation measures should take place. The production of a seismic risk map involves the convolution of seismic hazard data, vulnerability predictions for the building stock and exposure data. The seismic risk maps produced in Italy over the past 10 years are compared in this paper with recent proposals for seismic risk maps based on state-of-the-art seismic hazard data and mechanics-based vulnerability assessment procedures. The aim of the paper is to open the discussion for the way in which future seismic risk maps could be produced, making use of the most up-to-date information in the fields of seismic hazard evaluation and vulnerability assessment

    Recent modeling for the ITER ion cyclotron range of frequency antennas with the TOPICA code

    Get PDF
    This paper documents the analysis of the ITER ion cyclotron resonance heating (ICRF) launcher using the TOPICA code, throughout recent years' design activities. The ability to simulate the detailed geometry of an ICRF antenna in front of a realistic plasma and to obtain the antenna input parameters, the electric currents on conductors and the radiated field distribution next to the antenna is of significant importance to evaluate and predict the overall system performances. Starting from a reference geometry, we first investigated the impact of some geometrical and numerical factors, such as the Faraday Screen geometry or the mesh quality. Then a final geometry was the object of a comprehensive analysis, varying the working frequency, the plasma conditions and the poloidal and toroidal phasings between the feeding lines. The performance of the antenna has been documented in terms of input parameters, power coupled to plasma and electric fields. Eventually, the four-port junction has also been included in TOPICA models

    Effects of myenteric denervation on extracellular matrix fibers and mast cell distribution in normal stomach and gastric lesions

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud In this study the effect of myenteric denervation induced by benzalconium chloride (BAC) on distribution of fibrillar components of extracellular matrix (ECM) and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rats were divided in four experimental groups: non-denervated (I) and denervated stomach (II) without MNNG treatment; non-denervated (III) and denervated stomachs (IV) treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF).\ud \ud \ud \ud Results\ud \ud BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II) compared to the non-denervated stomachs (group I). The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively) with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV) compared to the non-denervated stomachs (group III) that showed degradation of these fibers. The development of lesions (groups III and IV) was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV.\ud \ud \ud \ud Conclusions\ud \ud The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes to understanding of tumor biology by action of myenteric denervation.We are grateful to Domingos Zanchetta Netto and Luiz Roberto Falleiros-Jr for technical assistance. CFE and CBM were supported by Fundação de Amparo á Pesquisa - FAPESP (grants 08/05722-6 and 03/10634-5, respectively) and SRT by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico - CNPq (grants 301111/05-7 and 300163/2008-8).We are grateful to Domingos Zanchetta Netto and Luiz Roberto FalleirosJr for technical assistance. CFE and CBM were supported by Fundação de Amparo á Pesquisa FAPESP (grants 08/057226 and 03/106345, respectively) and SRT by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico CNPq (grants 301111/057 and 300163/20088)
    • …
    corecore