10 research outputs found

    Development of a Fiber Optic Sensor for Online Monitoring of Thin Coatings

    Get PDF
     The thickness measurement of gas, liquid and solid layers is not only important for the basic research on nanoscience but equally valuable in contemporary applied biomedical research. Here, we have developed an optical spectroscopy based technique for the online monitoring of thin films (coatings). A low cost light emitting diode (LED) source combined with a fiber optic bundle and grating based spectrograph have been used to generate white light interferogram. We have monitored online change of refractive index of an air film (~4 μm thickness) with temperature following the change in the intensity profile of the interferogram. A thin film of water between two cover slips (thin glass plates) has also been monitored. We have proposed a schematic for further lowering the cost of the developed instrument for the online monitoring of the coating thickness (semitransparent liquid/gas/solid films) during manufacturing/processing. A brief theoretical analysis on the detection limit of the developed technique has also been discussed in the paper

    Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging

    Get PDF
    Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μ a ) and reduced scattering (μ s ’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell's diffusion theory either calculating μ a [cm ⁻¹ ] and μ s ’ [cm ⁻¹ ] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μ a and μ s ’, non-destructively. Setting μ s ’ according to destructive photon density wave (PDW) spectroscopy and fitting μ a resulted in root mean square error (rmse) of 18.7% in comparison to fitting μ s ’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μ a was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μ s ’ and online analysis of μ a may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μ s ’

    Spectroscopic Studies on Dual Role of Natural Flavonoids in Detoxification of Lead Poisoning: Bench-to-Bedside Preclinical Trial

    No full text
    Ubiquitousness in the target organs and associated oxidative stress are the most common manifestations of heavy-metal poisoning in living bodies. While chelation of toxic heavy metals is important as therapeutic strategy, scavenging of increased reactive oxygen species, reactive nitrogen species and free radicals are equally important. Here, we have studied the lead (Pb) chelating efficacy of a model flavonoid morin using steady-state and picosecond-resolved optical spectroscopy. The efficacy of morin in presence of other flavonoid (naringin) and polyphenol (ellagic acid) leading to synergistic combination has also been confirmed from the spectroscopic studies. Our studies further reveal that antioxidant activity (2,2-diphenyl-1-picrylhydrazyl assay) of the Pb–morin complex is sustainable compared to that of Pb-free morin. The metal–morin chelate is also found to be significantly soluble compared to that of morin in aqueous media. Heavy-metal chelation and sustainable antioxidant activity of the soluble chelate complex are found to accelerate the Pb-detoxification in the chemical bench (in vitro). Considering the synergistic effect of flavonoids in Pb-detoxification and their omnipresence in medicinal plants, we have prepared a mixture (SKP17LIV01) of flavonoids and polyphenols of plant origin. The mixture has been characterized using high-resolution liquid chromatography assisted mass spectrometry. The mixture (SKP17LIV01) containing 34 flavonoids and 76 other polyphenols have been used to investigate the Pb detoxification in mouse model. The biochemical and histopathological studies on the mouse model confirm the dual action in preclinical studies

    Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip

    No full text
    Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500–800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications

    Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip

    No full text
    Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500–800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications

    Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip

    No full text
    Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500–800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications

    Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip

    No full text
    Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500–800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications

    Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip

    No full text
    Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500–800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications
    corecore