Development of a Fiber Optic Sensor for Online Monitoring of Thin Coatings

Abstract

 The thickness measurement of gas, liquid and solid layers is not only important for the basic research on nanoscience but equally valuable in contemporary applied biomedical research. Here, we have developed an optical spectroscopy based technique for the online monitoring of thin films (coatings). A low cost light emitting diode (LED) source combined with a fiber optic bundle and grating based spectrograph have been used to generate white light interferogram. We have monitored online change of refractive index of an air film (~4 μm thickness) with temperature following the change in the intensity profile of the interferogram. A thin film of water between two cover slips (thin glass plates) has also been monitored. We have proposed a schematic for further lowering the cost of the developed instrument for the online monitoring of the coating thickness (semitransparent liquid/gas/solid films) during manufacturing/processing. A brief theoretical analysis on the detection limit of the developed technique has also been discussed in the paper

    Similar works