368 research outputs found

    A filter synthesis technique applied to the design of multistage broad-band microwave amplifiers

    Get PDF
    A method for designing multistage broad-band amplifiers based upon well-known filter synthesis techniques is presented. Common all-pole low-pass approximations are used to synthesize prototype amplifier circuits that may be scaled in frequency and impedance. All-pass filters introduced at the first stage are shown to improve input match while maintaining circuit performance less 6 dB gain. A theoretical comparison is made with the distributed amplifier and the cascaded single-stage distributed amplifier. Theoretically, a larger gain-bandwidth product is achieved using the synthesis technique. A proof-of-concept Butterworth low-pass two-stage amplifier was designed, simulated, and measured and achieved a flat gain performance of 1–4 GHz with a power gain of 14.5±1 dB close to the predicted 1–4.2 GHz, 15±1 dB

    Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    Get PDF
    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min) restraint stress conditions. On a circular hole board (CHB) task, about half of the naive female mice used spatial and stimulus-response strategies to solve the task. Under stress, female mice favored spatial over stimulus-response strategies, with 100% of female mice in the estrus phase. Performance expressed as latency to solve the task is only improved in stressed female mice in the estrus phase. We conclude that the use of learning strategies is influenced by sex and this difference between sexes is aggravated by acute stress

    An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells

    Get PDF
    We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    Human infection challenge in the pandemic era and beyond, HIC-Vac annual meeting report, 2022

    Get PDF
    HIC-Vac is an international network of researchers dedicated to developing human infection challenge studies to accelerate vaccine development against pathogens of high global impact. The HIC-Vac Annual Meeting (3rd and 4th November 2022) brought together stakeholders including researchers, ethicists, volunteers, policymakers, industry partners, and funders with a strong representation from low- and middle-income countries. The network enables sharing of research findings, especially in endemic regions. Discussions included pandemic preparedness and the role of human challenge to accelerate vaccine development during outbreak, with industry speakers emphasising the great utility of human challenge in vaccine development. Public consent, engagement, and participation in human challenge studies were addressed, along with the role of embedded social science and empirical studies to uncover social, ethical, and regulatory issues around human infection challenge studies. Study volunteers shared their experiences and motivations for participating in studies. This report summarises completed and ongoing human challenge studies across a variety of pathogens and demographics, and addresses other key issues discussed at the meeting
    corecore