
7 i
_ I

SANDIA REPORT
SAND97-0843 UC-705
Unlimited Release
Printed April 1997

HyperForest: A High Performance Multi-
Processor Architecture for Real-Time
Intelligent Systems

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any speciGc commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been repfoduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scient& and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
dOllrmf!I l t

SAND97-0843
Unlimited Release
Printed April 1997

Distribution
Category UC-705

HyperForest: A High Performance Multi-processor
Architecture for Real-Time Intelligent Systems

Pablo Garcia, Jr. and Juan P. Rebeil
Intelligent Systems Dept. I1
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1 006

Prof. Howard Pollard
Electrical Engineering and Computer Engineering Dept.

University of New Mexico
Albuquerque, NM 87 102

Abstract
Intelligent Systems are characterized by the intensive use of computer power. The
computer revolution of the last few years is what has made possible the development
of the first generation of Intelligent Systems. Software for second generation
Intelligent Systems will be more complex and will require more powerful computing
engines in order to meet real-time constraints imposed by new robots, sensors, and
applications. A multiprocessor architecture was developed that merges the advantages
of message-passing and shared-memory structures: expandability and real-time
compliance. The HyperForest architecture will provide an expandable real-time
computing platform for computationally intensive Intelligent Systems and open the
doors for the application of these systems to more complex tasks in environmental
restoration and cleanup projects, flexible manufacturing systems, and DOE’S own
production and disassembly activities.

Table of Contents

1.- Introduction

11.- Background
A.- Message-Passing and Shared-Memory Architectures
B.- Previous Work on HyperTrees

111.- HyperForest Architecture
A.- HyperForest Message-Passing Layer Definition
B..- HyperForest Shared-Memory Layer Definition
e..- Development Environment

1V.- Comparison with Other Message-Passing Architectures

V.- Performance Summary

VI.- Hardware Implementation

VI1.- Conununicating With 110 and Peripherals

VII1.- Co:nclusions

1X.- References

Appendix A

Appemdix B

1

2
2
2

5
5
8

10

11

15

17

23

27

28

34

53

HyperForest: A High Performance Multi-
processor Architecture for Real-Time Intelligent

Systems

1.- Introduction

Current computing platforms used in Intelligent Systems are expandable to a certain extent, but
will not provide the floating-point throughput and real-time capabilities that future Intelligent
Systems will require. World models will become more complex as larger sections of the real
world are modeled with ever increasing resolutions. Collision avoidance may require that each
point on the robot be compared with objects in the world model and the robot path altered
accordingly. The number of arithmetic operations for a six degree-of-freedom (DOF) robot varies
fiom 1500 with the inverse kinematics Newton-Euler formulation to over 6000 with resolved
motion adaptive control methods. A robot sampling frequency as high as 5 KHz is anticipated,
which translates to 30 MFLOPS of sustained floating-point throughput just for robot kinematics
control. Sensors are used to obtain data about the environment. They need to be serviced in real-
time and their data used for trajectory modification and world model updates. Sensor bandwidths
vary from obtaining a couple hundred bytes per second from an ultrasonic sensor to obtaining
digitized TV images at video rates. The efficient fusion of sensor data from different sources is
what enables an Intelligent System to respond promptly in dealing with the real world. However,
sensor data fusion requires additional real-time computing resources.

The use of redundant robot manipulators will demand more computationally intensive control
algorithms due the higher number of links. Long reach robot arms, heavier payloads, and faster
robot speeds will force kinematics control algorithms to include the effect of non-linearities such
as gravity loading, Coriolis centripetal forces, and flexing of robot links among others. The
addition of non-linearities will demand at least an order of magnitude increase in floating-point
performance alone. World models will become more complex as larger sections of the real world
are modeled with ever increasing resolutions. Collision avoidance algorithms may require that
hundreds of points on the robot’s surface be compared with objects in the world model and the
robot path altered accordingly.

The goal of this project was to develop an expandable multiprocessor architecture that will
satisfy the computational and real-time constraints of second generation Intelligent Systems.

1

11.- Background

A,- Message-Passing and Shared-Memory Architectures

The two main factors that determine system performance in a multiprocessor design are the
processing power of the individual nodes and the delays caused by inter-processor
communication. ,4 crucial decision for multiprocessor design is the choice between shared
memory and message passing architectures. Message passing structures, such as hypercubes and
meshes, provide :system expandability and programming abstraction but have the disadvantage of
excessive overhead due to message routing. Shared bus architectures have the disadvantage of
limited bus bandwidth, but have lower communication overhead. On the other hand, Intelligent
Systems control programs are characterized by being decoupled between tasks but with high
serial dependencies within a task (for example, kinematics control programs are decoupled from
processing of seinsory data.) Such characteristics result in poor hardware utilization when these
programs are executed in architectures that aim at massive parallelisms such as hypercubes.

A multiprocessor architecture for Intelligent Systems must merge the advantages of message-
passing and shared-memory structures to reduce delays in inter-processor communication and
provide system expandability, real-time response times, an efficient interface to a wide variety of
sensors, and the capability to share large data sets. It must be able to take advantage of fine
(instruction level:) and coarse (task level) parallelism in control programs.

As part of a Laboratory Directed Research and Development (LDRD) project, we developed a
hybrid architecture that takes advantage of control program characteristics by being expandable
to tens of high performance Digital-Signal-Processor (DSP) nodes. Furthermore, the floating-
point engines of IXP processors are designed to exploit fine level parallelism in matrix and vector
operations, both heavily used in control programs. This hybrid architecture will support both
message passing and shared memory paradigms in hardware.

B.- Previous Work on HyperTrees

A team led by Prof. David Patterson at the University of California at Berkeley defined an
architecture called X-tree in the late 1970’s. This architecture is based on binary trees with extra
links in each node. These extra links then could be used to form other types of structures to
reduce the connection distance between nodes.

J. R. Goodman and C. H. Sequin presented a paper in 1981 titled “HyperTree: A multiprocessor
interconnection topology.” This paper described an interconnection topology for incrementally
expandable multicomputer systems, which combined the easy expandability of tree structures
with the compactness of the n-dimensional hypercube. The addition of n-cube links to the
binary tree structure provided direct paths between nodes which have frequent data exchange in
algorithms such i2S sorting and fast Fourier transforms (FFTs).

2

Leaf connections to 110 devices

Figure 1 .- 3-Level HyperTree

This paper presented a very interesting idea, and one that we applied to our work. The
architecture they presented was a hybrid between a binary tree and a hypercube? although for
simplicity? it is limited to hypercubes of size 1 and 2. The basic idea was to add communication
links to the nodes of a binary tree, and to use the extra links to connect nodes at the same level in
a hypercube. Figure 1 shows a 3 level HyperTree. In this figure you can see that with 4 links per
node, 3 of the links are used for a regular binary tree structure, and the fourth port to connect the
node to another node in the same binary tree level. A similar approach is used for 5 links per

3

node, but with a hypercube of size 2. The worst-case and average distances are better than in the
simple binary trele, and fault tolerance is also improved by having alternate paths between nodes.
The HyperTree can be easily expanded, unlike the hypercube and binary tree that require the
addition of a large number of nodes.

Although the HyperTree can be expanded, the interconnections grow more complicated as more
levels are added to it. Figure 2 shows the interconnection topology for a 6-level HyperTree.

Figure 2.- 6-Level HyperTree

4

II I.- H yperFo res t Arch i tectu re

A,- HyperForest Message-Passing Layer Definition

Although the HyperTree is very interesting, the are some limitations to how well it can be
expanded and in how to implement it in hardware in a compact package. One of our goals was to
have a VME-bus compatible implementation that could easily be expanded to more nodes if
higher processing power was needed. We decided to limit the size of a HyperTree to three levels
(7 nodes) and to grow it in the number of trees and not in growing a single tree. By doing it this
way we had a collection of 3-level HyperTrees, which we very cleverly named a HyperForest.

In order to achieve this vision, we needed to make some modification to the basic HyperTree
structure, specially in the number of communication links available at each node. We selected 6
communication links per node mainly because we had a Digital-Signal-Processor in mind for the
hardware implementation and it had 6 parallel communication links available. Figure 3 shows a
node and its communication links.

Higher tree . Parent

/
/

/
/

/

Processing Node

(6 communication

Neighbor

/
/

/
/

Left child Right child /
Lower tree

Connections to nodes
in same HyperTree

- - Connections to nodes
in higher or lower
HyperTrees

Note: Ports not connected to other nodes can
be used for sensor interfacing and i/o
devices

Figure 3.- HyperForest Node

5

For each node, the Parent, Left Child, and Right Child links are used to form binary tree
structure; the Neighbor link connects to a node at the same level in the binary tree to form a
hypercube size 1 at that level. Two other links, Higher Tree and Lower Tree connect the node to
its counterpart node in other two trees in the HyperForest. Figure 4 shows OUT modified 3-level
HyperTree with six communication links per node.

I

4
I
1 0

0

0
0

/ \ / \ / \ / \
/ \ / \ / \ / \

/ \ / \ / \ / \
\
\

/ \ / \ / \ /
/ \ / *. \. *

Connections to nodes
in same HyperTree

I I) , Connectionstonodes
in higher or lower
HyperTrees

Figure 4.- Modified HyperTree with 6 Communication Links per Node

6

Creating a HyperForest multiprocessor with the modified HyperTrees is very easy. All it takes
is to stack the HyperTrees on top of each other. All the communication links are bi-directional
and there are a number of paths from any one node to another node, independently if they are in
the same HyperTree or not. Figure 5 shows how the HyperTrees can be stacked.

0 PORTS

NODE

Figure 5.- HyperForest with 2 HyperTrees

In Figure 5, the number in each node represents the number of communication links available for
expansion. These can be used to connect to more HyperTrees and/or for inputloutput (I/O) to
devices such as sensors through a standard interface.

7

B.- HyperForest Shared-Memory Layer Definition

This is a very standard architecture where a number of processing nodes share a global bus to
access memory and peripherals. We wanted this layer to be completely independent of the
message-passing one. We selected the Texas Instrument TMS320C40 DSP processor because in
addition to the 3;!-global memory bus it also has 6 %bit 20MbyteIsec bi-directional
communication links designed for interfacing without any glue logic to other processors of the
same type. Based on this decision, each node in the HyperForest would look like Figure 6.

50 MH2:
40 n s cycle time
275 MOPS
320 MByte/sec
16 GByte address space
50 MFLOPS peak

I O 0 MByte/sec
32-bit Local Bus

1 MB
or

4 MB

LOCAL
DRAM

~

TMS320C40

PARALLEL
DSP

PROCESSOR

50 MFLOPS

r

On chip:
51 2 Byte instruction cache
8 KByte RAM

100 MByte/sec
32-bit Global Bus

Global bus connected to
other nodes' Global
Buses in HyperTree

CP0.S: 8-bit bidirectional
communication ports, 20
MB/s each, 4 control signals

CPO CP1 CP2 CP3 CP4 CP5

Figure 6.- HyperForest Node Based on Texas Instruments TMS320C40 Processor

8

Figure 7 shows the shared-memory layer for each of the HyperTrees in the HyperForest. Nodes
in different HyperTrees can also communicate with each other by issuing a request to own the
global bus of its HyperTree and using the VMEbus interface to communicate with a node in
another HyperTree.

GLOBAL TREE BUS
NoI=E
0

A

NaE
4

 LO CALM EM I
GLOBAL BUS

NODE
1

GLOBAL BUS

i GLOBAL BUS

ILOCALMEM I

1 2 1
I I

GLOBAL BUS

n
NCOE
3

GLOBAL BUS

NODE
5

GLOBAL BUS 1 BUS
I

I LOCAL MEM 1

lal

-1 GLOE3ALMEMORY I
BUS ARBITRATION

CQNlROLLER

-1 VMEINTERFACE I

I ETHERNET
INTERFACE

Figure 7.- HyperTree Shared-Memory Layer

9

C.- Developnient Environment

VxWorlts OS

Figure 8 shows the development environment for HyperForest applications. It consists of a
number of HyperTrees (1 or more) linked by the communication links coming idout of each node
as well as by each HyperTree's interface to a VMEbus. This industry standard in very popular
in the computer control community and there is a large number of third-party boards available
with processors, memory, video digitizers, motor controllers, digital and analog I/O etc. The
VMEbus cage serves as host for custom-designed 1/0 boards connected to the HyperTree nodes
via their communication links.

VME Host
SPARC-based board

VxWorks OS

A Sun Microsystems SPARC-compatible VME board serves as the front end of the
HyperForest Trees and it uses the real-time operating system VxWorks. The commercially
available SPOX operating system was ported to each node in the HyperForest. It was selected
because it suppoIted the TMS320C40, had a small kernel, was real-time, and had communication
routines compatible with VxWorks.

\ HyperTree
1

I
and other I/O

VMEbus I

1
I 1

Figure 8.- HyperForest Development Environment

10

IV.- Comparison with Other Message-Passing Architectures

Hypercubes

Hypercubes are very popular with the massive-parallel computing community. But they do not
scale very well in the sense that to take advantage of the architecture all the nodes have to be
populated. In other words, the scaling is 2,4, 8, 16,32, 64, etc. If for example, an application
requires 17 nodes, a 32 node computer will have to be build with all 32 nodes.
For an n-dimensional hypercube, the worst and average distances are given by:

D w = n
Dave = d 2

n #nodes Dw Dave
3 8 3 1.5
4 16 4 2
5 32 5 2.5
6 64 6 3

for example:

The n-dimensional hypercube architecture is not truly expandable and the nodes require
additional links as the dimension grows. Incompletely populated hypercubes lack some of its
characteristics (Le. Dw and Dave shown above don’t hold anymore).

Figure 9 shows a comparison of average Hamming distances for hypercubes and HyperForests of
various sizes. From this plot we see that the HyperForest compares very well with hypercubes
of up to 32 nodes.

Binary Trees

For a binary tree with n-levels, the distances are given by:
Dw = 2(n - 1)
Dave = 2(n -1) - 2 + (2M)

where N is the number of leaf nodes (Le. N = 2*(n- 1)).
For example:

n #nodes Dw Dave
3 7 4 2.5
4 15 6 4.25
5 31 8 6.125
6 63 10 8.062

Binary tress are easily expandable and unbalanced trees still keep most of their properties.
Unfortunately, Dw and Dave for binary tress are worse than those of hypercubes.

11

a
0
S m
v)
c -- n
e a

4

3

2

Ave. Distance Comparison Between
HyperForest and Hypercube

1

1 8

I

-

!

illlilllllil

1 5 22 29 36 43 5 0

Number of nodes
5 7

Figure 9.- Average Distance Comparison between HyperForest and Hypercubes

H y perTrees

HyperTrees use additional links to combine the hypercube and binary tree architectures into one.
The additional links at the nodes provide redundant paths. Messages originating at leaf nodes
never need to travel higher than half the height of three to reach any other leaf node. The Dw and
Dave are taken from Goodman and Sequin's paper where n is number of levels and a one-
dimensional hypercube is used at each level of the tree:

Dw = 1.5(n - 1) - 0.5((n-1) mod 2)
Dave = 1.25(n-1) - 1.33 + (4/3N) - O.O8((n-1) mod 2)

where N is the number of leaf nodes @.e. N = 2*(n-l)). For example:
n #nodes Dw Dave
3 7 3 1.5
4 15 4 2.5
5 31 6 3 -4

These numbers are for the basic HyperTree as presented by Goodman and Sequin.

12

300

250

200

'b

U J
w

-- s

%
--

1 5 0

E
i=

100

50

0

Five Level HyperTree, 31 nodes
Ave. Dist. = 3.4 Max. Dist. = 6, Ave. Visit = 102.7

l l l l l l l l l l 1

0 5 1 0 1 5 2 0 25 3 0 3 5

Node

Figure 10.- Plot of Message Traffic on a Five-Level, 3 1 -Node HyperTree

Figure 10 shows the result of a simulation of a five level HyperTree (3 1 nodes) with messages
sent from each node to every other node. From this plot we see that nodes 4,5,6, and 7 had
more traffic that all the other nodes and represent a bottleneck in this message-passing
architecture.

HyperForest

The HyperForest architecture is a 3-d collection of modified HyperTrees (limited to 3-levels, 7
nodes). It keeps the characteristics of the HyperTree, but direct connections are available to other
HyperTrees. Only 3-level HyperTrees are used: Dw and Dave for a 3-level HyperTree (7 nodes)
are identical to those of a 3-dimensional hypercube (8 nodes).

Let T be the number of modified HyperTrees in a HyperForest machine, then:
D w = (T - 1) + 3
Dave = computed in simulation

13

For example:
T
1
2
3
4
5
6

#nodes
7
14
21
28
35
42

Dw
3
4
5
6
7
8

Dave
1.5
2.03
2.43
2..78
3.12
3.46

We see that HyperForests with up to 4 trees (28 nodes) compare favorably with up to 5-
dimensional hypercubes (32 nodes) in terms of Dw while being more easily expanded.
Calculations for HyperForest Dw did not take into account the use of shared-buses for each tree.
Figure 11 shows the result of a simulation of a four tree HyperForest (28 nodes) with messages
sent from each node to every other node.

Four Tree HyperForest, 28 nodes
Ave. Dist. = 2.78 Max. Dist. = 6, Ave. Visit = 75

cn
e
F=

120

110

100

90

80

70

60

50

4 0

0 5 1 0 1 5
Node

20 2 5 30

Figure 1 1 .- Plot of Message Traffic on a Four-tree, 28-Node HyperForest

14

The routing algorithm for the messages consisted on taking the shortest path to the destination
node if it was in the same HyperTree; or the shortest path to the node in the source HyperTree
that was directly above or below the destination node and then traveling up or down to the
destination node. With this algorithm, we see from the plot in Figure I 1 that nodes 2 and 3 (the
children of each root node) had more traffic and could become bottlenecks. This can be solved by
either taking alternate routes if the traffic through those nodes is heavy or by committing an extra
communications link to connect nodes 2 and’3 and double the available bandwidth between them
from 20MBytes/sec to 40 MBytedsec.

HyperTrees Worst case Ave distance
1 3 1.67

V.- Performance Summary

3
4
5

Floating Point Performance

5 2.43
6 2.78
7 3.12

50 MFLOPS peakhode
350 MFLOPS peakltree
1400 MFLOPS for a 4-tree HyperForest

7
8

Inter- process0 r com m u n icati on

9 3.79
10 4.13

20 MByte/s per message-passing link
9 links (1 80 MByte/s) for communication within each HyperTree
100 MByte/s global shared bus within HyperTree
7 links (140 MByte/s) to each of two neighboring trees
Message passing Hamming distances:

1 6 1 8 I 3.46 I

1 9 I 11 I 4.46 I

15

Memory

On-board each node CPU
5 12 Bytes instruction cache
8, KBytes single cycle RAM

Local Memory for each node
3 2-bit local 100 MByte/s bus
16 KByte fast copy back cache
4. MByte DRAM

Global Memory for each tree
3#2-bit global 100 MByte/s bus
4.- 16 MByte page mode DRAM

In p u t/O u t p ut

Sensor interfaces
10 dedicated links (200 MByte/s) from each HyperTree
Memory-mapped on 100 MByte/s global bus

Other
40 MByte/sec VME interface on global bus

Table 1 .- HyperForest Performance Summary

16

VI.- Hardware Implementation

The basic objective of the hardware portion of the HyperForest project is to create a hardware
platform that will implement the HyperForest concept in such a way that the system can be
created in a reasonable size, be interfaced to other system components, and still maintain the
characteristics of a HyperForest system. This will allow the exploration of both shared memory
and message passing paradigms on the same platform, and also permit high speed computations
needed for real time control and robotics applications.

The block diagram of the implementation is shown in Figure 12. This block diagram
demonstrates the results of a variety of design decisions that dealt with the realities of creating a
HyperForest system utilizing commercially available TMS32C040 modules. The basic building
block of the HyperForest implementation is a TIM module, which has the following
characteristics:

Processor: Texas Instruments TMS32C040
Salient TMS32C040 Characteristics:

Two independent memory bus systems: 32 bits Address; 32 Bits data
Built in floating point capabilities
Six byte-wide communication links with individual DMA controllers

and 4 MBytes on bus which is visible externally
Memory: 8 MBytes total; 4 MBytes on bus not available externally

Memory interconnect: bus system with 32 bits address, 32 bits data
Message passing links: Six byte-wide communication links with DMA

The connection scheme which is demonstrated in Figure 12 includes both the global bus and the
individual point-to-point connections. As seen on the diagram, the global connection is common
to all modules, and contains the control lines (BUSCONT), the address lines (ADRBUS), and the
communications is the VME interface, which allows connection of this bus to a VME bus based
system.

The point-to-point links which are included in the diagram connect the various TIM modules
together into a HyperForest connection, which consists of a binary tree organization augmented
with additional links allowing further expansion of the system. Node 1 is connected to the left
child via link 1 and the right child via link 2. Since Node 1 is in the root node position, there is no
connection to a parent. Nodes 2 and 3 are connected to the parent (which in this case is Node 1
for both Nodes 2 and 3) using Link 3, while again Link 1 is used to connect to the left child and
link 2 is used to connect to the right child. The four nodes on the next level, nodes 4,5,6, and 7,
are connected to their parent nodes by using link 3. Since there are no designated children nodes
for these four nodes, the remaining links can be used as needed to connect to other modules on
other HyperForest boards. At each level of the binary tree (except the root level) nodes are
connected to another node at the same level. Nodes 2 and 3 are connected together on their level,
while Nodes 4 and 6 are connected together, and Nodes 5 and 7 are connected together.

17

1 3 I I I I

Figure 12.- Block Diagram of HyperForest's Hardware Implementation

18

Another salient characteristic of the HyperForest connection mechanism is the connection of the
nodes of the binary tree organization to nodes of a similar binary tree. Note that the organization
represented in Figure 12 has sufficient links available to allow this connection mechanism to be
achieved. Each of the nodes in the diagram has sufficient links to be connected to two other
nodes, one in each of similar binary trees adjacent to the binary tree shown in the diagram. The
remaining links can be used for I/O purposes if needed.

Another characteristic of the implementation of the HyperForest system is the division of the
nodes to fit physically on two boards. In order to accomplish this, the boards must be connected
together with a connection system capable of providing a path for both the global bus and the
links connecting the second and third levels of the binary tree together.

In order to test implementation techniques for the system, a bread-board was implemented which
helped to isolate some of the problems and give experience with the various system components.
This breadboard was built with wire-wap techniques so that connections could be easily moved
to identify the effect of different connection schemes. The wire-wrap techniques worked well,
but presented a challenge to connect to the TIM modules, since the Hiroshe connectors used for
TIM module interconnects were not easily mated to a wire-wrap scheme that utilized posts
mounted on 0.1 " centers. Nevertheless, adapters were made that allowed the TIM modules to
mate to the wire-wrap board, and the project proceeded. The breadboard contains two TIM
modules, a moderate amount of static M M , the chips involved in the VME interconnection
scheme, the chips involved in the boot up sequence, and the programmable chips to control the
bus interaction in the system. The breadboard also contains connectors to check the point-to-
point message passing connections, and a JTAG interface for debug purposes. Utilizing the
breadboard, hardware solutions were checked for the programmable devices to control bus
interaction within the board, as well as the connection to the VME bus. Also included in the
checkout methodology were implementations for power-on reset, for forced reset, for debugging
methods using external compilers and loaders through the JTAG interface, and the impedance
matching techniques needed to improve the fidelity of the signals involved in the various
transactions. All of these individual test areas contributed to a fuller knowledge of the challenges
facing the creation of the printed circuit board version of the system.

The knowledge and experience garnered in the creation of the breadboard version of the test set,
as well as the results of simulations and the work done with programmable logic, were needed to
create the final two-board set of printed circuits which together implement a HyperForest
subsystem. Rather than give a block diagram of the board, Figure 13 gives a layout of the first of
the two boards used in this implementation. The diagram shows the results of many of the
design decisions that were needed to create a printed-circuit version of the HyperForest. The
various elements of the system included on the board are:

19

u.
e1201 e1202

ML-51 1 - L - 5 1

ML.3 1

pa iwr~.ci

I t.. ,I I

s w 1
e 1 3 0 1 -

1 L - 3 1

1 r i r M 4 O

c
7 4 ~ ~ ~ 1 6 2 4 5 7 4 A C T 1 6 2 4 5 Fl p--l

7 4 A C T l 6 2 4 5

E3
7 4 A C T l 6 2 4 5

7 4 A C T 1 6 2 4 5

'ACA13

7 4 A C T l 6 2 4 5

El
7 4 A C T 1 6 2 4 5 7 4 A C T 1 6 2 4 5 El 'I 3

Ti ISM-1

E P F 8 2 R 2

TQFP-1 D

C

-

R M 3 - + 5 2

7 4 ~ ~ ~ 1 6 2 4 5 7 4 A C T 1 6 2 4 5 Fl Fl
D L 4 B D L 4 0

7 4 A C T 1 6 2 4 5 7 4 A C T 1 6 2 4 5

~ 4 D I P J pj 4DXP

~,,,...... 1. 'L soc-60

-.. " .
V T C 0 6 4

~

EPF.32.32 m 0
v3 5

PQFP- 160
ItPAC 15D m

A) The VME interface. The boards have been created in what is known as a "2-high" VME form
factor, so that it can easily reside in commercially available card cages, and so that it can easily
interface to other systems which abide by the VME bus protocol. Thus, the 96-pin DIN edge
connectors are used to connect to VME address, data, and control lines for the VME
interconnection. The integrated circuits involved in this interaction incIude a VIC064 and three
CY7C964 from Cypress Semiconductor, as well as a EPF8282 FLEX programmable controller
from Altera.

B) The bus control system. Each of the TIM modules, as well as the VME interface already
mentioned, interfaces to an internal 32 bit data bus, which has associated with it a 32 bit address
bus and appropriate control lines. One of the EPF8282 FLEX programmable controllers from
Altera has been dedicated to the management of the transactions on this bus. Hence, the
programmable controller must handle arbitration for the bus, and interface with each TIM module
and the VME subsystem to assure that only one module attempts to obtain control of the bus at
any one time.

C) The boot-up circuitry. Normal boot-up of the system is achieved by establishing in a TIM
module a program which can then be used to load even larger and more complex programs. The
TIM modules have been created in such a way that upon reset they are waiting for a program to
be loaded through a point-to-point port. Therefore, the boot up procedure is to send to such a
port the sequence of commands necessary to set up a common bootstrap program. An Intel
28F020 FLASH ROM (256 KByte) provides the storage needed for the download program
storage, and an Altera 5 128 programmable controller provides the control for the process,
including the addressing and sequencing of activities.

D) TIM modules for Nodes 1,2, and 3. The first board provides the space necessary for three
of the seven nodes needed for a HyperForest subsystem. Each of the nodes contains not only
the required TIM module, but also an EPF8282 FLEX programmable controller to control the
interaction of the node with the internal global bus, 74ACT16245 transceivers to isolate the
global bus activity from the TIM module itself, and the appropriate resistor networks to match
impedance and provide improved signal quality for the point-to-point connections. The use of
the transceivers allows the various TIM modules to operate independently, isolating the global
bus connection of each module from the corresponding connections of other modules.

E) Interconnection methods. There are three basic connector systems in use on the subsystem.
Already mentioned is the set of two 96-pin DIN connectors used for the VME connection; this
set of connectors also supplies the power used on the board. Another connection which is
needed is the connection between the two boards; this is accomplished with a 152 pin connector
which utilized three rows of pins. This quantity of interconnections is needed for the address,
data, and control lines of the global bus, plus the point-to-point connections needed between the
second and third layer of the binary tree structure of the HyperForest architecture. The third set
of connectors is included at the edge of the system, where 3 1 - and 5 1 - pin connectors are used to
provide connections for 2- and 3-sets of point-to-point port signals. This allows the board to be
connected to other HyperForest subsystems in the HyperForest system interconnect scheme.

21

F) Miscellaneous glue subsystems. These include a common oscillator for all TIM modules, a
64 MHz oscillator needed by the VME bus subsystem chip, reset circuitry, including both
power-up reset and operator-initiated reset, JTAG interface circuitry, and assorted pullup and
impedance matching resistances.

Included in Appendix A are the eighteen sheets of schematics which define the first board. Sheet
1 contains the information for Node 1, including the TIM module, its interconnects to point-to-
point connections, bus connections, and control lines. It also contains the bus transceivers with
appropriate control lines. Sheets 2 and 3 contain the same information for Nodes 2 and 3. Sheet
4 contains the reset circuitry, the oscillators, assorted pullups, and the serial PROMS that
establish the circuitry of the RAM based programmable logic on the board. Sheet 5 contains the
ROM for the boot code and the controller which controls its interaction with Node 1. Sheet 6
contains the programmable controllers that control the bus interaction for Nodes 1,2, and 3.
Sheet 7 contains the programmable controller that handles bus arbitration and access control to
the bus for the nodes and the VME bus controller. Sheet 8 contains the JTAG header and
associated circuitry. Sheets 9 and 10 contain the VME bus interface circuitry, while sheet 1 1
contains the connectors for the VME bus interaction. Sheets 12 and 13 contain the
communication port connectors, while sheet 14 shows the connector which is used to connect the
two boards together. Sheets 15, 16, and 17 show the impedance networks to minimize noise on
the point-to-point connections. Sheet 18 contains assorted pullups needed for the
implementation, and sheet 19 shows the bypass capacitors used on the board.

A layout of the second board of the '-board HyperForest subsystem is shown in Figure 14.
This board duplicates many of the portions of the first board, yet has some unique features:

A) Bus system. The control of the bus is handled by the circuitry on the first board, and hence
the second board does not have responsibility for control. But it does have the appropriate
circuitry at each 'TIM module to participate in the interactions required for global bus transfers.

B) TIM modules for Nodes 4, 5 , 6 , and 7. As with the first board, with each of these TIM
modules includes a EPF8282 FLEX programmable controller to control the bus interaction and
appropriate bus transceivers and resister networks to handle interface with other system
components.

C) Interconnection system. The same connector types are present on the second board, and
they have most of the same responsibilities. The 152 pin inter-board connector is used for global
bus interactions imd point-to-point connection with the other nodes of the HyperForest
subsystem. The edge is populated with 3 1- and 5 1-pin connectors for 2- and 3-sets of point-to-
point connections used in HyperForest point-to-point interconnections. Also, two 96-pin DIN
connectors are available as per VME specification. However, the only use for these connectors
on this board is to provide power for the circuitry.

22

Included in Appendix B are the twenty sheets of schematics which defme the second board.
Sheet 1 contains the information for Node 4, including the TIM module, its interconnects to
point-to-point connections, bus connections, and control lines. It also contains the bus
transceivers with appropriate control lines. Sheets 2,3, and 4 contain the same information for
Nodes 5,6, and 7. Sheet 5 contains the clock drivers and the JTAG chain. Sheets 6 and 7
contain the programmable controllers that control the bus interaction for Nodes 4,5,6, and 7.
Sheet 8 shows the connector which is used to connect the two boards together. Sheets 9, 10, 1 1,
and 12 contain the connectors used for the communication links, while sheet 13 contains the
VME bus connectors which supply power to the board. Sheets 14, 15, 16, 17, and 18 contain
resistor networks for impedance matching on the point-to-point connections for the nodes. Sheet
19 contains bypass capacitors used on the board, and Sheet 20 contains pullups used by
integrated circuits on the board.

Four sets of these boards were fabricated, and are ready for checkout. The checkout needs to
veri@ that the programmable logic can appropriately control the bus interaction, the arbitration,
and the interaction with the VME logic. The checkout also needs to create the code section
necessary for the download sequence to load executable code into the system. Once this has been
established, techniques useful for real-time operation in control applications can be implemented.

V1I.- Communicating With 110 and Peripherals

In the industrial automation world, recent years have seen a falling from favor of the traditional
method of wiring sensors, actuators, and other devices directly to a control unit such as a
Programmable Logic Controller (PLC) or a personal computer (PC). Discrete wiring is being
replaced by “fieldbuses” or “devicebuses” that allow the connection of many devices (equipped
with the appropriate communication electronics) to a single cable bus via tees in much the same
manner as thin-net ethernet. The rationale for this approach is that the higher cost of the new
communications-enabled devices is more than offset by the savings in wiring in applications
where the slower response of the new devices (due to them sharing a single communications
channel) is not an issue.

This trend towards devicebuses in the industrial automation arena has been fortunate for
HyperForest. Whereas the traditional approach to connecting peripheral devices would require a
different hardware and software interface to the HyperForest architecture, all types of devices on
a devicebus can be accessed through a single hardware/software interface to the devicebus.

23

*I * , I

L

4 4

iq

i

31

L

3 I L -
Figure 14.- HyperTree Board 2 Layout: 4 Nodes

24

At the time of this writing, there are many different competing fieldbus and devicebus standards.
The more complex “fieldbus” standards such as Profibus are meant for communication with
complex devices common in the process industries. Intermediate complexity “devicebuses” such
as DeviceNet are intended for discrete manufacturing applications (e.g., assembly) where the
devices range in complexity from a simple mechanical switch to moderately sophisticated devices
such as pneumatic manifolds and motor drives. At the low end of the complexity scale,
“bitbuses” such as AS1 can only communicate with simple odoff sensors and actuators.

We selected DeviceNet for use with HyperForest because it is the standard with the most
industry support within the US and the range of devices available for it is ideal for most robotics
and automation applications

DeviceNet is based on an automotive communications bus called Controller Area Network
(CAN). CAN is a differential serial bus developed in Germany by Bosch for Mercedes Benz and
BMW as a means for the various electronic control units in their automobiles to communicate
with each other. Due to the economies of scale in the auto industry, the integrated circuits (ICs)
needed to implement CAN communications quickly became plentiful and inexpensive. Allen
Bradley (AB) in the US used CAN hardware with additional hardware and software protocol
standards to create the open, but proprietary, DeviceNet standard. AB later donated the standard
to a consortium of industrial automation companies called the Open DeviceNet Vendors
Association (ODVA) to allay industry fears that AB would have an unfair advantage in the
DeviceNet market or that it would close the standard once it became popular.

At the lowest level, DeviceNet is a 5-wire bus (2 differential serial lines, 2 lines for 24 VDC, and
a shield) that can operate at 125 kbaud, 250 kbaud, or 500 kbaud. The message packets are short;
they consist of a header, up to 8 bytes of data, and a trailer. Devices transmit only when the bus
is quiet; in the event 2 devices start transmitting simultaneously, the first device to transmit a 1
but detect a 0 on the bus immediately stops transmitting, ceding control of the bus to the other
device (as it turns out, the one with the lower address). Each device receives every message on
the DeviceNet bus, but usually only processes packets intended for it. A given DeviceNet can
have up to 64 devices with different addresses, but this is not a serious limitation in most
applications since each device can have many I/O points andor functions.

DeviceNet uses a master-slave control scheme. The DeviceNet master is a board or module that
plugs into the bus of the system controller. These boards are available for several bus
architectures including VME, ISA, PCMCIA, PClO4, as well as for several popular PLCs. The
variety of available DeviceNet slave devices is extensive: discrete I/O, analog I/O, photoelectric
sensors, AC motor starters, AC and DC motor drives, servo and stepper motor controllers,
pneumatic manifolds, RS232 translators, barcode scanners, potentiometers, man-machine
interfaces (MMIs), encoders, vacuum instruments, etc. Figure 15 shows a typical DeviceNet
network installation.

The typical application usually has a single DeviceNet master, in our case, the HyperForest
VME chassis with an S-S Technologies DeviceNet VME interface board. The DeviceNet board

25

consists of a CPlJ that is loaded with scanner software that continually queries all known devices
on the DeviceNet and writes the results in a section of dual port RAM that is accessible to the
HyperForest via the VME bus. DeviceNet output devices are controlled in the same manner;
HyperForest writes the appropriate data to the DeviceNet board’s dual port RAM, which the
scanner process continually scans for changes and sends the appropriate commands encoded in
packets to the DeviceNet wire. The high baud rates available, together with the short packet
lengths, would seem to suggest that DeviceNet can have a high refresh rate. Unfortunately, the
master-slave protocol slows performance considerably. Typical refresh rates tend to run in the
tens of milliseconds, making DeviceNet inappropriate for some of the more demanding real-time
applications. Also, it is arbitrated; hence, inderteminate (ie. not applicable to hard real-time
applications).

% AB a7 motor starters

I
10 AB Deviceinks+prox sensors

AB Redistation pushbutton

Festo pneumatic manifold w/I/O modules

Fig. 15.- Typical DeviceNet Network

26

VI I I. - Con c I us i o n s

The great advances in computer technology in the last few years made it possible to have large
computational capacity at a relatively low cost. You can do today in a Pentium-Pro based
systems what it took many older generation processors and specialized busses such as VMEbus
or S-bus. Specialized architectures such as HyperForest will still have niche applications, but for
the most part, a larger size of problem can be solved today with the advances in the Personal
Computer industry such as Windows NT, Pentium-Pro processors, high speed networks, etc.
The main advantages here being the wide availability of software tools, the number of people that
know how to use them, and the low cost of the hardware.

The work on this LDRD provides an architecture that can be tailored to a niche application in
terms of number of processors (or computing power desired) and interconnects to sensors and
other devices. We did not get to apply it to a big problem, but this work that will hopefully
continue both at Sandia and at the University of New Mexico.

27

1 X . m References

Agarwal, A., B. H. Lim, et al. (1990). APRIL: A processor architecture for multiprocessing. 17th
IEEE Annual International Symposium on Computer Architecture, 104-1 14.

Ahmad, S. and €3. Li (1987). Optimal design of multiple arithmetic processor-based robot
controllers. IEEE Robotics and Automation Conference, 660-663.

Allison, D. A. (:I 990). System issues in embedded control. IEEE COMPCON, 2 14-2 15.

Appiani, E., B. Conterno, et al. (1 989). “EMMA2, a high-performance hierarchical
multiprocessor.” IEEE Micro (February): 42-56.

Aras, C. M. and R. C. Luo (1989). HMP: A hierarchical multiprocessor computer architecture
for multi-sensor based robotic tasks. IEEE International Symposium on Intelligent Control,
Albany, NY, USA, 487-492.

Bhuyan, L. M. and D. P. Agrawal (I 984). “Generalized hypercube and hyperbus structures for a
computer network.” IEEE Transactions on Computers C-33(4): 323-333.

Bhuyan, L. N., (2. Yang, et al. (1 989). “Performance of multiprocessor interconnection
networks.” IEEE Computer (February): 25-37.

Carlson, D. A. (1 988). “Modified mesh-connected parallel computers.” IEEE Transactions on
Computers 37(October): 13 15-1 32 1.

Carr, L., R. Kibler, et al. (1989). G-32 A high performance VLSI 3-D computer. 22th AMUI
Hawaii Intematj onal Conference on System Sciences, Kailua-Kona, HI, USA, 127-1 34.

Chang, P. R. and C. S. Lee (1988). Residue arithmetic VLSI array architecture for manipulator
pseudo-inverse jacobian computation. IEEE Robotics and Automation Conference, 297-302.

Chow, E., H. Madan, et al. (1987). A real-time adaptive message routing network for the
hypercube computer. IEEE Real Time Systems Symposium, 88-96.

Cogswell, B. and Z. Segall(l99 1). MACS: a predictable architecture for real time systems. IEEE
Real Time Systlcms Symposium, 296-305.

Despain, A. M. and D. A. Patterson (1978). X-tree: A tree structured multi-processor computer
architecture. 5th Annual Symposium on Computer Architecture, Palo Alto, CA, USA, 144-15 1.

28

Dinning, A. (1 989). “A survey of synchronization methods for parallel computers.” IEEE
Computer (July): 66-77.

Duncan, R. (1990). “A survey of parallel computer architectures.” IEEE Computer (February):
5-16.

Fathi, E. T. and M. Krieger (1983). “Multiple microprocessor systems: what, why, and when.”
IEEE Computer (March): 23-32.

Fiddler, J., D. N. Wilner, et al. (1 990). Multiprocessing: An extension of distributed, real-time
computing. IEEE COMPCON, 2 16-2 1 8.

Fornard, R. J. and E. W. Davies (1 989). Analysis and implementation of hierarchical real-time
architectures. Euromicro Workshop on Real Time, Como, Italy, 66-73.

Fotakis, D. and N. Bourbakis (1987). A RISC-type structural design of the HERMES
multiprocessor kernel. Supercomputing, 1 st International Conference, Athens, Greece, 1 0 1 1 -
1030.

Franzkowiak, G. H. and H. Schmid (1 983). Efficiency analysis of single bus multiprocessor
architectures. IEEE Real Time Systems Symposium, 5 1-60.

Furth, B., D. Gluch, et al. (1991). The REALLSTAR 2000: A high performance multiprocessor
computer for telemetry applications. ITC/USA/‘9 1 International Telemetering Conference, Las
Vegas, NV, USA, 365-373.

Gerber, R. and I. Lee (1 989). Communicating shared resources: a model for distributed real-time
systems. IEEE Real Time Systems Symposium, 68-78.

Goodman, J. R. and C. H. Sequin (1 98 1). “HyperTree: A multiprocessor interconnection
topology.” IEEE Transactions on Computers C-30(December): 923-933.

Goodman, J. R. and P. J. Woest (1988). The Wisconsin Multicube: A new large-scale cache-
coherent multiprocessor. 15th IEEE Annual International Symposium on Computer Architecture,
422-429.

Graham, J. H. (1989). “Special computer architectures for robotics: tutorial and survey.” IEEE
Transactions on Robotics and Automation 5(0ctober): 543-554.

Han, C. C. and K. J. Lin (1989). Scheduling parallelizable jobs on multiprocessors. IEEE Real
Time Systems Symposium, 59-67.

29

Huffstutter, K. L. (1 990). A distributed processing system design verification process.
IEEE/AIAA/NASA 9th Digital Avionics Systems Conference, Virginia Beach, VA, USA, 458-
461.

Hurt, A. D. and J. R. Heath (1982). A hardware task scheduling mechanism for a real-time multi-
processor architecture. IEEE Real Time Systems Symposium, 1 13-123.

Jackson, J. H. (1 99 1). The Data Transport Computer: A 3-dimensional massively parallel SIMD
computer. IEEE {COMPCON, 264-269.

Joseph, M. and A.. Goswani (1 988). What's 'real' about real-time systems. IEEE Real Time
Systems Symposium, 78-85.

Kazanzides, P. (I 988). Multiprocessor control of robotic manipulators. Ph. D. Dissertation,
Brown University

Kejian, M. and L. Yongxi (1989). A multiprocessor simulation computer - MPSC-I. Beijing
International Conference on System SImulation and Scientific Computing, Beijing, China, 208-
210.

Khosla, P. K. and S. Ramos (1 988). A comparative analysis of the hardware requirements for the
Lagrange-Euler and Newton-Euler dynamics formulations. IEEE Robotics and Automation
Conference, 29 1-296.

Kirk, D. B. (1 988). Process dependent static cache partitioning for real-time systems. IEEE Real
Time Systems Symposium, 1 8 1 - 190.

Kirk, D. B. (1989). SMART (Strategic Memory Allocation for Real-Time) cache design. IEEE
Real Time Systems Symposium, 229-237.

Kirk, D. B. and J. K. Strosnider (1990). SMART (Strategic Memory Allocation for Real-Time)
cache design using the MIPS R3000. IEEE Real Time Systems Symposium, 322-330.

Kovaleski, A., S . Ratheal, et aI. (1986). An architecture and an interconnection scheme for time-
sliced buses in real-time processing. IEEE Real Time Systems Symposium, 20-27.

Kung, A. and R. Kung (1 985). Galaxy: A distributed real-time operating system supporting high
availability. IEEE Real Time Systems Symposium, 79-87.

Lenoski, D., J. Laudon, et al. (1992). The DASH prototype: implementation and performance.
IEEE 19th Annual International Symposium on Computer Architecture, 92- 103.

30

Leung, S. S. and M. A. Shanblatt (1988). Computer architecture design for robotics. IEEE
Robotics and Automation Conference, 453-456.

Li, X. and M. Malek (1 988). Analysis of speed up and communicatiodcomputation ratio in
multiprocessor systems. IEEE Real Time Systems Symposium, 282-288.

Light, R. A. (1 982). A real-time executive for multiple microprocessor systems. IEEE Real Time
Systems Symposium, 143-150.

Lin, H. and W. Yueming (1985). VLSI systolic architecture for real-time digital signal processing.
IEEE Real Time Systems Symposium, 141 - 146.

Ling, Y.-L. C. (1986). Hierarchical multiprocessor architecture design in VLSI for real-time
robotic control applications. Ph. D. Dissertation, Ohio State University

Malbasa, V. (1 987). RAMS- a multiprocessor system for dynamic system simulation. IEEE Real
Time Systems Symposium, 64-69.

Markenscoff, P. (1 982). Analysis of a multiple processor system for real time applications. IEEE
Real Time Systems Symposium, 45-56.

Miinner, R. and 0. Stucky (1990). “The Polyp multiprocessor: Architecture and applications in
nuclear physics.” Computers in Physics 4(May/June): 267-274.

Molini, J. J., S. K. Maimon, et al. (1990). Real-time system scenarios. IEEE Real Time Systems
Symposium, 2 14-225.

Mun, W. (1 989). Pipelined multiprocessor computer architecture and fast parallel algorithms for
real-time robot control. Ph. D. Dissertation, Oregon State University

Naghdy, F., C. K. Wai, et al. (1 988). Multiprocessing control of robotic systems. IEEE Robotics
and Automation Conference, 975-977.

Niehaus, D. (1 991). Program representation and translation for predictable real-time systems.
IEEE Real Time Systems Symposium, 53-63.

Olson, R. (1 986). Realtime response on a message based multiprocessor. IEEE Real Time
Systems Symposium, 28-35.

Rajkumar, R., L. Sha, et al. (1988). Real-time synchronization protocols for multiprocessors.
IEEE Real Time Systems Symposium, 259-269.

31

Rasmussen, R. D., N. J. Dimopoulos, et al. (1987). MAX: advanced general purpose real time
multicomputer for space applications. IEEE Real Time Systems Symposium, 70-78.

Rayfield, J. T. (1 988). Armstrong, a loosely-coupled multiprocessor testbed for reconfigurable
topologies. Ph. D. Dissertation, Brown University

Rettberg, R. D., W. R. Crowther, et al. (1 990). “The Monarch parallel processor hardware
design.” IEEE Computer (April): 18-30.

Rowe, P. K. and 13. Pagurek (1 987). Remedy: A real-time multiprocessor, system level debugger.
IEEE Real Time !Systems Symposium, 230-240.

Saponas, T. G. (1 986). A real-time distributed processing system. IEEE Real Time Systems
Symposium, 364b3.

Schwan, K., T. Bihari, et al. (1985). GEM: Operating system primitives for robots and real-time
control systems. 1:EEE Robotics and Automation, 807-8 13.

Schwan, K., W. Bo, et al. (1986). A high-performance, object-based operating system for real-
time, robotic applications. IEEE Real Time Systems Symposium, 147- 1 56.

Sha, L., R. Rajkulnar, et al. (1990). Real-time scheduling support in Futurebus. IEEE Real Time
Systems Symposium, 33 1-340.

Shin, G. K. (1 991). “HARTS: A distributed real-time architecture.” IEEE Computer (May): 25-
35.

Stenstrom, P. (1990). “A survey of cache coherence schemes for multiprocessors.’’ IEEE
Computer (June): 12-24.

Tamir, Y. and G. L. Frazier (1988). Support for high priority traffic in VLSI communication
switches. IEEE R.eal Time Systems Symposium, 19 1-200.

Tan, W. S., S. H. Russ, et al. (1991). GT-EP: A novel high-performance real-time architecture.
IEEE 1 8th Annual International Symposium on Computer Architecture, 12-2 1.

Thakkar, S., M. Dubois, et al. (1 990). “Scalable shared-memory multiprocessor architectures.”
IEEE Computer (June): 7 1-73.

Toda, K., K. Nishida, et al. (1990). CODA: A multiprocessor architecture for sensor fusion. 5th
IEEE International Symposium on Intelligent Control, Philadelphia, PA, USA, 26 1-266.

32

van Dijk, G. J. W. and A. J. van der Wal(1991). “EMPS: The design of an architecture for a

distributed homogeneous multiprocessor system.” Microprocessors and Microsystems
1 S(May): 187-1 94.

Vranesic, Z. G., M. Stumm, et al. (1 991). “Hertor: A hierarchically structured shared-memory
multiprocessor.yy IEEE Computer (January): 72-78.

Walter, C. J., R. M. Kieckhafer, et al. (1 985). MAFT: A multicomputer architecture for fault-
tolerance in real-time control systems. IEEE Real Time Systems Symposium, 133-140.

Wang, Y. (1 988). RIPS: a computer architecture for advanced robot control. Ph. D. Dissertation,
University of California, Santa Barbara

Wang, Y., A. Mangaser, et al. (1 992). “The 3DP: A processor architecture for three-dimensional
applications.” IEEE Computer (January): 25-36.

Wedde, H. F., G. S. Alijani, et al. (1988). MELODY: a distributed real-time testbed for adaptive
systems. IEEE Real Time Systems Symposium, I 12-1 19.

Wilkinson, N. A., M. S . Atkins, et al. (1988). A real time parallel processing data acquisition
system. IEEE Real Time Systems Symposium, 54-59.

Woodbury, M. H. (1 986). Performance modeling and measurement or real-time multiprocessors
with time-shared buses. IEEE Real Time Systems Symposium, 109- 1 1 8.

33

Appendix A

Schematics for Board I

..
mr nn

CUI 'IN
..

I
3

1

i
i:

3

I I I

- I I I

a

--PI
I ' I

. .
I

I

Arbi t ra iz ion Svstem

A 1 n I c 1 D

Um/sandia - HyperForest Development
I RE". -

I l o b b

4

k ' I N I I

Y

5 5 A I 7 . 1 ,

5 "
0

.. .

n

u
f

-

LI

I I I

c,
k
0
PI

I I I

I I I

l I I -

l I I

I I I

i

Appendix B

Schematics for Board 2

..
n

f
3

- I I I -

1 I I

L

i:

I I I

I I I

I I I

I I I

li

I N I I

L1
6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l I I I I

C

I I I

I t I

>I--

I_ I I I

E i f

s
a
u

I
I

' I

DISTRIBUTION:

2

1
5
1
5
3
3
1
6
1

i

MS-06 1 9

MS-0188
MS-0899
MS-1002
MS-1006
MS-1006
MS-1006
MS-1007
MS-1008
MS-9018

Review & Approval Desk, 12690
For DOEYOSTI
LDRD Office, 4523
Technical Library, 4414
P. J. Eicker, 9600
P. Garcia, 9671
J. P. Rebeil, 9671
H. Pollard
A. T. Jones, 9672
S . Blauwkamp, 9621
Central Technical Files, 8940-2

	1 Introduction
	11 Background
	A Message-Passing and Shared-Memory Architectures
	B Previous Work on HyperTrees

	111 HyperForest Architecture
	A HyperForest Message-Passing Layer Definition
	B HyperForest Shared-Memory Layer Definition
	Development Environment

	1V Comparison with Other Message-Passing Architectures
	V Performance Summary
	VI Hardware Implementation
	VI1 Conununicating With 110 and Peripherals
	VII1 Co:nclusions
	1X References
	Appendix A

