
7 i 
_ I  

SANDIA REPORT 
SAND97-0843 UC-705 
Unlimited Release 
Printed April 1997 

HyperForest: A High Performance Multi- 
Processor Architecture for Real-Time 
Intelligent Systems 



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, prod- 
uct, or process disclosed, or  represents that its use would not infringe pri- 
vately owned rights. Reference herein to any speciGc commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or  favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors. The views and opinions expressed 
herein do not necessarily state or reflect those of the United States Govern- 
ment, any agency thereof, or any of their contractors. 

Printed in the United States of America. This report has been repfoduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scient& and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831 

Prices available from (615) 576-8401, FTS 626-8401 

Available to  the public from 
National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A05 
Microfiche copy: A01 



Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
dOllrmf!I l t  



SAND97-0843 
Unlimited Release 
Printed April 1997 

Distribution 
Category UC-705 

HyperForest: A High Performance Multi-processor 
Architecture for Real-Time Intelligent Systems 

Pablo Garcia, Jr. and Juan P. Rebeil 
Intelligent Systems Dept. I1 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, NM 87185-1 006 

Prof. Howard Pollard 
Electrical Engineering and Computer Engineering Dept. 

University of New Mexico 
Albuquerque, NM 87 102 

Abstract 
Intelligent Systems are characterized by the intensive use of computer power. The 
computer revolution of the last few years is what has made possible the development 
of the first generation of Intelligent Systems. Software for second generation 
Intelligent Systems will be more complex and will require more powerful computing 
engines in order to meet real-time constraints imposed by new robots, sensors, and 
applications. A multiprocessor architecture was developed that merges the advantages 
of message-passing and shared-memory structures: expandability and real-time 
compliance. The HyperForest architecture will provide an expandable real-time 
computing platform for computationally intensive Intelligent Systems and open the 
doors for the application of these systems to more complex tasks in environmental 
restoration and cleanup projects, flexible manufacturing systems, and DOE’S own 
production and disassembly activities. 
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HyperForest: A High Performance Multi- 
processor Architecture for Real-Time Intelligent 

Systems 

1.- Introduction 

Current computing platforms used in Intelligent Systems are expandable to a certain extent, but 
will not provide the floating-point throughput and real-time capabilities that future Intelligent 
Systems will require. World models will become more complex as larger sections of the real 
world are modeled with ever increasing resolutions. Collision avoidance may require that each 
point on the robot be compared with objects in the world model and the robot path altered 
accordingly. The number of arithmetic operations for a six degree-of-freedom (DOF) robot varies 
fiom 1500 with the inverse kinematics Newton-Euler formulation to over 6000 with resolved 
motion adaptive control methods. A robot sampling frequency as high as 5 KHz is anticipated, 
which translates to 30 MFLOPS of sustained floating-point throughput just for robot kinematics 
control. Sensors are used to obtain data about the environment. They need to be serviced in real- 
time and their data used for trajectory modification and world model updates. Sensor bandwidths 
vary from obtaining a couple hundred bytes per second from an ultrasonic sensor to obtaining 
digitized TV images at video rates. The efficient fusion of sensor data from different sources is 
what enables an Intelligent System to respond promptly in dealing with the real world. However, 
sensor data fusion requires additional real-time computing resources. 

The use of redundant robot manipulators will demand more computationally intensive control 
algorithms due the higher number of links. Long reach robot arms, heavier payloads, and faster 
robot speeds will force kinematics control algorithms to include the effect of non-linearities such 
as gravity loading, Coriolis centripetal forces, and flexing of robot links among others. The 
addition of non-linearities will demand at least an order of magnitude increase in floating-point 
performance alone. World models will become more complex as larger sections of the real world 
are modeled with ever increasing resolutions. Collision avoidance algorithms may require that 
hundreds of points on the robot’s surface be compared with objects in the world model and the 
robot path altered accordingly. 

The goal of this project was to develop an expandable multiprocessor architecture that will 
satisfy the computational and real-time constraints of second generation Intelligent Systems. 
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11.- Background 

A,- Message-Passing and Shared-Memory Architectures 

The two main factors that determine system performance in a multiprocessor design are the 
processing power of the individual nodes and the delays caused by inter-processor 
communication. ,4 crucial decision for multiprocessor design is the choice between shared 
memory and message passing architectures. Message passing structures, such as hypercubes and 
meshes, provide :system expandability and programming abstraction but have the disadvantage of 
excessive overhead due to message routing. Shared bus architectures have the disadvantage of 
limited bus bandwidth, but have lower communication overhead. On the other hand, Intelligent 
Systems control programs are characterized by being decoupled between tasks but with high 
serial dependencies within a task (for example, kinematics control programs are decoupled from 
processing of seinsory data. ) Such characteristics result in poor hardware utilization when these 
programs are executed in architectures that aim at massive parallelisms such as hypercubes. 

A multiprocessor architecture for Intelligent Systems must merge the advantages of message- 
passing and shared-memory structures to reduce delays in inter-processor communication and 
provide system expandability, real-time response times, an efficient interface to a wide variety of 
sensors, and the capability to share large data sets. It must be able to take advantage of fine 
(instruction level:) and coarse (task level) parallelism in control programs. 

As part of a Laboratory Directed Research and Development (LDRD) project, we developed a 
hybrid architecture that takes advantage of control program characteristics by being expandable 
to tens of high performance Digital-Signal-Processor (DSP) nodes. Furthermore, the floating- 
point engines of IXP  processors are designed to exploit fine level parallelism in matrix and vector 
operations, both heavily used in control programs. This hybrid architecture will support both 
message passing and shared memory paradigms in hardware. 

B.- Previous Work on HyperTrees 

A team led by Prof. David Patterson at the University of California at Berkeley defined an 
architecture called X-tree in the late 1970’s. This architecture is based on binary trees with extra 
links in each node. These extra links then could be used to form other types of structures to 
reduce the connection distance between nodes. 

J. R. Goodman and C. H. Sequin presented a paper in 1981 titled “HyperTree: A multiprocessor 
interconnection topology.” This paper described an interconnection topology for incrementally 
expandable multicomputer systems, which combined the easy expandability of tree structures 
with the compactness of the n-dimensional hypercube. The addition of n-cube links to the 
binary tree structure provided direct paths between nodes which have frequent data exchange in 
algorithms such i2S sorting and fast Fourier transforms (FFTs). 
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Leaf connections to 110 devices 

Figure 1 .- 3-Level HyperTree 

This paper presented a very interesting idea, and one that we applied to our work. The 
architecture they presented was a hybrid between a binary tree and a hypercube? although for 
simplicity? it is limited to hypercubes of size 1 and 2. The basic idea was to add communication 
links to the nodes of a binary tree, and to use the extra links to connect nodes at the same level in 
a hypercube. Figure 1 shows a 3 level HyperTree. In this figure you can see that with 4 links per 
node, 3 of the links are used for a regular binary tree structure, and the fourth port to connect the 
node to another node in the same binary tree level. A similar approach is used for 5 links per 
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node, but with a hypercube of size 2. The worst-case and average distances are better than in the 
simple binary trele, and fault tolerance is also improved by having alternate paths between nodes. 
The HyperTree can be easily expanded, unlike the hypercube and binary tree that require the 
addition of a large number of nodes. 

Although the HyperTree can be expanded, the interconnections grow more complicated as more 
levels are added to it. Figure 2 shows the interconnection topology for a 6-level HyperTree. 

Figure 2.- 6-Level HyperTree 
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II I.- H yperFo res t Arch i tectu re 

A,- HyperForest Message-Passing Layer Definition 

Although the HyperTree is very interesting, the are some limitations to how well it can be 
expanded and in how to implement it in hardware in a compact package. One of our goals was to 
have a VME-bus compatible implementation that could easily be expanded to more nodes if 
higher processing power was needed. We decided to limit the size of a HyperTree to three levels 
( 7 nodes) and to grow it in the number of trees and not in growing a single tree. By doing it this 
way we had a collection of 3-level HyperTrees, which we very cleverly named a HyperForest. 

In order to achieve this vision, we needed to make some modification to the basic HyperTree 
structure, specially in the number of communication links available at each node. We selected 6 
communication links per node mainly because we had a Digital-Signal-Processor in mind for the 
hardware implementation and it had 6 parallel communication links available. Figure 3 shows a 
node and its communication links. 

Higher tree . Parent 

/ 
/ 

/ 
/ 

/ 

Processing Node 

(6 communication 

Neighbor 

/ 
/ 

/ 
/ 

Left child Right child / 
Lower tree 

Connections to nodes 
in same HyperTree 

- - Connections to nodes 
in higher or lower 
HyperTrees 

Note: Ports not connected to other nodes can 
be used for sensor interfacing and i/o 
devices 

Figure 3.- HyperForest Node 
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For each node, the Parent, Left Child, and Right Child links are used to form binary tree 
structure; the Neighbor link connects to a node at the same level in the binary tree to form a 
hypercube size 1 at that level. Two other links, Higher Tree and Lower Tree connect the node to 
its counterpart node in other two trees in the HyperForest. Figure 4 shows OUT modified 3-level 
HyperTree with six communication links per node. 

I 

4 
I 
1 0 

0 

0 
0 

/ \ / \ / \ / \ 
/ \ / \ / \ / \ 

/ \ / \ / \ / \ 
\ 
\ 

/ \ /  \ /  \ /  
/ \ /  *. \. \* 

Connections to nodes 
in same HyperTree 

I I) , Connectionstonodes 
in higher or lower 
HyperTrees 

Figure 4.- Modified HyperTree with 6 Communication Links per Node 
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Creating a HyperForest multiprocessor with the modified HyperTrees is very easy. All it takes 
is to stack the HyperTrees on top of each other. All the communication links are bi-directional 
and there are a number of paths from any one node to another node, independently if they are in 
the same HyperTree or not. Figure 5 shows how the HyperTrees can be stacked. 

0 PORTS 

NODE 

Figure 5.- HyperForest with 2 HyperTrees 

In Figure 5, the number in each node represents the number of communication links available for 
expansion. These can be used to connect to more HyperTrees and/or for inputloutput (I/O) to 
devices such as sensors through a standard interface. 
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B.- HyperForest Shared-Memory Layer Definition 

This is a very standard architecture where a number of processing nodes share a global bus to 
access memory and peripherals. We wanted this layer to be completely independent of the 
message-passing one. We selected the Texas Instrument TMS320C40 DSP processor because in 
addition to the 3;!-global memory bus it also has 6 %bit 20MbyteIsec bi-directional 
communication links designed for interfacing without any glue logic to other processors of the 
same type. Based on this decision, each node in the HyperForest would look like Figure 6. 

50 MH2: 
40 n s  cycle time 
275 MOPS 
320 MByte/sec 
16 GByte address space 
50 MFLOPS peak 

I O 0  MByte/sec 
32-bit Local Bus 

1 MB 
or 

4 MB 

LOCAL 
DRAM 

~ 

TMS320C40 

PARALLEL 
DSP 

PROCESSOR 

50 MFLOPS 

r 

On chip: 
51 2 Byte instruction cache 
8 KByte RAM 

100 MByte/sec 
32-bit Global Bus 

Global bus connected to 
other nodes' Global 
Buses in HyperTree 

CP0.S: 8-bit bidirectional 
communication ports, 20 
MB/s each, 4 control signals 

CPO CP1 CP2 CP3 CP4 CP5 

Figure 6.- HyperForest Node Based on Texas Instruments TMS320C40 Processor 
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Figure 7 shows the shared-memory layer for each of the HyperTrees in the HyperForest. Nodes 
in different HyperTrees can also communicate with each other by issuing a request to own the 
global bus of its HyperTree and using the VMEbus interface to communicate with a node in 
another HyperTree. 

GLOBAL TREE BUS 
NoI=E 
0 

A 

NaE 
4 

  LO CALM EM I 
GLOBAL BUS 

NODE 
1 

GLOBAL BUS 

i GLOBAL BUS 

ILOCALMEM I 

1 2 1  
I I 

GLOBAL BUS 

n 
NCOE 
3 

GLOBAL BUS 

NODE 
5 

GLOBAL BUS 1 BUS 
I 

I LOCAL MEM 1 

lal 

-1 GLOE3ALMEMORY I 
BUS ARBITRATION 

CQNlROLLER 

-1 VMEINTERFACE I 

I ETHERNET 
INTERFACE 

Figure 7.- HyperTree Shared-Memory Layer 
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C.- Developnient Environment 

VxWorlts OS 

Figure 8 shows the development environment for HyperForest applications. It consists of a 
number of HyperTrees (1 or more) linked by the communication links coming idout of each node 
as well as by each HyperTree's interface to a VMEbus. This industry standard in very popular 
in the computer control community and there is a large number of third-party boards available 
with processors, memory, video digitizers, motor controllers, digital and analog I/O etc. The 
VMEbus cage serves as host for custom-designed 1/0 boards connected to the HyperTree nodes 
via their communication links. 

VME Host 
SPARC-based board 

VxWorks OS 

A Sun Microsystems SPARC-compatible VME board serves as the front end of the 
HyperForest Trees and it uses the real-time operating system VxWorks. The commercially 
available SPOX operating system was ported to each node in the HyperForest. It was selected 
because it suppoIted the TMS320C40, had a small kernel, was real-time, and had communication 
routines compatible with VxWorks. 

\ HyperTree 
1 

I 
and other I/O 

VMEbus I 

1 
I 1 

Figure 8.- HyperForest Development Environment 
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IV.- Comparison with Other Message-Passing Architectures 

Hypercubes 

Hypercubes are very popular with the massive-parallel computing community. But they do not 
scale very well in the sense that to take advantage of the architecture all the nodes have to be 
populated. In other words, the scaling is 2,4, 8, 16,32, 64, etc. If for example, an application 
requires 17 nodes, a 32 node computer will have to be build with all 32 nodes. 
For an n-dimensional hypercube, the worst and average distances are given by: 

D w = n  
Dave = d 2  

n #nodes Dw Dave 
3 8 3 1.5 
4 16 4 2 
5 32 5 2.5 
6 64 6 3 

for example: 

The n-dimensional hypercube architecture is not truly expandable and the nodes require 
additional links as the dimension grows. Incompletely populated hypercubes lack some of its 
characteristics (Le. Dw and Dave shown above don’t hold anymore). 

Figure 9 shows a comparison of average Hamming distances for hypercubes and HyperForests of 
various sizes. From this plot we see that the HyperForest compares very well with hypercubes 
of up to 32 nodes. 

Binary Trees 

For a binary tree with n-levels, the distances are given by: 
Dw = 2(n - 1) 
Dave = 2(n -1) - 2 + (2M) 

where N is the number of leaf nodes (Le. N = 2*(n- 1)). 
For example: 

n #nodes Dw Dave 
3 7 4 2.5 
4 15 6 4.25 
5 31 8 6.125 
6 63 10 8.062 

Binary tress are easily expandable and unbalanced trees still keep most of their properties. 
Unfortunately, Dw and Dave for binary tress are worse than those of hypercubes. 
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a 
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3 

2 
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HyperForest and Hypercube 

1 

1 8 

I 

- 

! 

illlilllllil 

1 5  22 29 36 43 5 0  
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5 7  

Figure 9.- Average Distance Comparison between HyperForest and Hypercubes 

H y perTrees 

HyperTrees use additional links to combine the hypercube and binary tree architectures into one. 
The additional links at the nodes provide redundant paths. Messages originating at leaf nodes 
never need to travel higher than half the height of three to reach any other leaf node. The Dw and 
Dave are taken from Goodman and Sequin's paper where n is number of levels and a one- 
dimensional hypercube is used at each level of the tree: 

Dw = 1.5(n - 1) - 0.5((n-1) mod 2) 
Dave = 1.25(n-1) - 1.33 + (4/3N) - O.O8((n-1) mod 2) 

where N is the number of leaf nodes @.e. N = 2*(n-l)). For example: 
n #nodes Dw Dave 
3 7 3 1.5 
4 15 4 2.5 
5 31 6 3 -4 

These numbers are for the basic HyperTree as presented by Goodman and Sequin. 
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Figure 10.- Plot of Message Traffic on a Five-Level, 3 1 -Node HyperTree 

Figure 10 shows the result of a simulation of a five level HyperTree (3 1 nodes) with messages 
sent from each node to every other node. From this plot we see that nodes 4,5,6, and 7 had 
more traffic that all the other nodes and represent a bottleneck in this message-passing 
architecture. 

HyperForest 

The HyperForest architecture is a 3-d collection of modified HyperTrees (limited to 3-levels, 7 
nodes). It keeps the characteristics of the HyperTree, but direct connections are available to other 
HyperTrees. Only 3-level HyperTrees are used: Dw and Dave for a 3-level HyperTree (7 nodes) 
are identical to those of a 3-dimensional hypercube (8  nodes). 

Let T be the number of modified HyperTrees in a HyperForest machine, then: 
D w = ( T - 1 ) + 3  
Dave = computed in simulation 
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For example: 
T 
1 
2 
3 
4 
5 
6 

#nodes 
7 
14 
21 
28 
35 
42 

Dw 
3 
4 
5 
6 
7 
8 

Dave 
1.5 
2.03 
2.43 
2..78 
3.12 
3.46 

We see that HyperForests with up to 4 trees (28 nodes) compare favorably with up to 5- 
dimensional hypercubes (32 nodes) in terms of Dw while being more easily expanded. 
Calculations for HyperForest Dw did not take into account the use of shared-buses for each tree. 
Figure 11 shows the result of a simulation of a four tree HyperForest (28 nodes) with messages 
sent from each node to every other node. 

Four Tree HyperForest, 28 nodes 
Ave. Dist. = 2.78 Max. Dist. = 6, Ave. Visit = 75 

cn 
e 
F= 

120 

110 

100 

90 

80 

70 

60 

50 

4 0  

0 5 1 0  1 5  
Node 

20 2 5  30 

Figure 1 1 .- Plot of Message Traffic on a Four-tree, 28-Node HyperForest 
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The routing algorithm for the messages consisted on taking the shortest path to the destination 
node if it was in the same HyperTree; or the shortest path to the node in the source HyperTree 
that was directly above or below the destination node and then traveling up or down to the 
destination node. With this algorithm, we see from the plot in Figure I 1  that nodes 2 and 3 (the 
children of each root node) had more traffic and could become bottlenecks. This can be solved by 
either taking alternate routes if the traffic through those nodes is heavy or by committing an extra 
communications link to connect nodes 2 and’3 and double the available bandwidth between them 
from 20MBytes/sec to 40 MBytedsec. 

# HyperTrees Worst case Ave distance 
1 3 1.67 

V.- Performance Summary 

3 
4 
5 

Floating Point Performance 

5 2.43 
6 2.78 
7 3.12 

50 MFLOPS peakhode 
350 MFLOPS peakltree 
1400 MFLOPS for a 4-tree HyperForest 

7 
8 

Inter- process0 r com m u n icati on 

9 3.79 
10 4.13 

20 MByte/s per message-passing link 
9 links (1 80 MByte/s) for communication within each HyperTree 
100 MByte/s global shared bus within HyperTree 
7 links (140 MByte/s) to each of two neighboring trees 
Message passing Hamming distances: 

1 6  1 8  I 3.46 I 

1 9  I 11 I 4.46 I 
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Memory 

On-board each node CPU 
5 12 Bytes instruction cache 
8, KBytes single cycle RAM 

Local Memory for each node 
3 2-bit local 100 MByte/s bus 
16 KByte fast copy back cache 
4. MByte DRAM 

Global Memory for each tree 
3#2-bit global 100 MByte/s bus 
4.- 16 MByte page mode DRAM 

In p u t/O u t p ut 

Sensor interfaces 
10 dedicated links (200 MByte/s) from each HyperTree 
Memory-mapped on 100 MByte/s global bus 

Other 
40 MByte/sec VME interface on global bus 

Table 1 .- HyperForest Performance Summary 
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VI.- Hardware Implementation 

The basic objective of the hardware portion of the HyperForest project is to create a hardware 
platform that will implement the HyperForest concept in such a way that the system can be 
created in a reasonable size, be interfaced to other system components, and still maintain the 
characteristics of a HyperForest system. This will allow the exploration of both shared memory 
and message passing paradigms on the same platform, and also permit high speed computations 
needed for real time control and robotics applications. 

The block diagram of the implementation is shown in Figure 12. This block diagram 
demonstrates the results of a variety of design decisions that dealt with the realities of creating a 
HyperForest system utilizing commercially available TMS32C040 modules. The basic building 
block of the HyperForest implementation is a TIM module, which has the following 
characteristics: 

Processor: Texas Instruments TMS32C040 
Salient TMS32C040 Characteristics: 

Two independent memory bus systems: 32 bits Address; 32 Bits data 
Built in floating point capabilities 
Six byte-wide communication links with individual DMA controllers 

and 4 MBytes on bus which is visible externally 
Memory: 8 MBytes total; 4 MBytes on bus not available externally 

Memory interconnect: bus system with 32 bits address, 32 bits data 
Message passing links: Six byte-wide communication links with DMA 

The connection scheme which is demonstrated in Figure 12 includes both the global bus and the 
individual point-to-point connections. As seen on the diagram, the global connection is common 
to all modules, and contains the control lines (BUSCONT), the address lines (ADRBUS), and the 
communications is the VME interface, which allows connection of this bus to a VME bus based 
system. 

The point-to-point links which are included in the diagram connect the various TIM modules 
together into a HyperForest connection, which consists of a binary tree organization augmented 
with additional links allowing further expansion of the system. Node 1 is connected to the left 
child via link 1 and the right child via link 2. Since Node 1 is in the root node position, there is no 
connection to a parent. Nodes 2 and 3 are connected to the parent (which in this case is Node 1 
for both Nodes 2 and 3) using Link 3, while again Link 1 is used to connect to the left child and 
link 2 is used to connect to the right child. The four nodes on the next level, nodes 4,5,6, and 7, 
are connected to their parent nodes by using link 3. Since there are no designated children nodes 
for these four nodes, the remaining links can be used as needed to connect to other modules on 
other HyperForest boards. At each level of the binary tree (except the root level) nodes are 
connected to another node at the same level. Nodes 2 and 3 are connected together on their level, 
while Nodes 4 and 6 are connected together, and Nodes 5 and 7 are connected together. 
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1 3  I I I I 

Figure 12.- Block Diagram of HyperForest's Hardware Implementation 
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Another salient characteristic of the HyperForest connection mechanism is the connection of the 
nodes of the binary tree organization to nodes of a similar binary tree. Note that the organization 
represented in Figure 12 has sufficient links available to allow this connection mechanism to be 
achieved. Each of the nodes in the diagram has sufficient links to be connected to two other 
nodes, one in each of similar binary trees adjacent to the binary tree shown in the diagram. The 
remaining links can be used for I/O purposes if needed. 

Another characteristic of the implementation of the HyperForest system is the division of the 
nodes to fit physically on two boards. In order to accomplish this, the boards must be connected 
together with a connection system capable of providing a path for both the global bus and the 
links connecting the second and third levels of the binary tree together. 

In order to test implementation techniques for the system, a bread-board was implemented which 
helped to isolate some of the problems and give experience with the various system components. 
This breadboard was built with wire-wap techniques so that connections could be easily moved 
to identify the effect of different connection schemes. The wire-wrap techniques worked well, 
but presented a challenge to connect to the TIM modules, since the Hiroshe connectors used for 
TIM module interconnects were not easily mated to a wire-wrap scheme that utilized posts 
mounted on 0.1 " centers. Nevertheless, adapters were made that allowed the TIM modules to 
mate to the wire-wrap board, and the project proceeded. The breadboard contains two TIM 
modules, a moderate amount of static M M ,  the chips involved in the VME interconnection 
scheme, the chips involved in the boot up sequence, and the programmable chips to control the 
bus interaction in the system. The breadboard also contains connectors to check the point-to- 
point message passing connections, and a JTAG interface for debug purposes. Utilizing the 
breadboard, hardware solutions were checked for the programmable devices to control bus 
interaction within the board, as well as the connection to the VME bus. Also included in the 
checkout methodology were implementations for power-on reset, for forced reset, for debugging 
methods using external compilers and loaders through the JTAG interface, and the impedance 
matching techniques needed to improve the fidelity of the signals involved in the various 
transactions. All of these individual test areas contributed to a fuller knowledge of the challenges 
facing the creation of the printed circuit board version of the system. 

The knowledge and experience garnered in the creation of the breadboard version of the test set, 
as well as the results of simulations and the work done with programmable logic, were needed to 
create the final two-board set of printed circuits which together implement a HyperForest 
subsystem. Rather than give a block diagram of the board, Figure 13 gives a layout of the first of 
the two boards used in this implementation. The diagram shows the results of many of the 
design decisions that were needed to create a printed-circuit version of the HyperForest. The 
various elements of the system included on the board are: 
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A) The VME interface. The boards have been created in what is known as a "2-high" VME form 
factor, so that it can easily reside in commercially available card cages, and so that it can easily 
interface to other systems which abide by the VME bus protocol. Thus, the 96-pin DIN edge 
connectors are used to connect to VME address, data, and control lines for the VME 
interconnection. The integrated circuits involved in this interaction incIude a VIC064 and three 
CY7C964 from Cypress Semiconductor, as well as a EPF8282 FLEX programmable controller 
from Altera. 

B) The bus control system. Each of the TIM modules, as well as the VME interface already 
mentioned, interfaces to an internal 32 bit data bus, which has associated with it a 32 bit address 
bus and appropriate control lines. One of the EPF8282 FLEX programmable controllers from 
Altera has been dedicated to the management of the transactions on this bus. Hence, the 
programmable controller must handle arbitration for the bus, and interface with each TIM module 
and the VME subsystem to assure that only one module attempts to obtain control of the bus at 
any one time. 

C) The boot-up circuitry. Normal boot-up of the system is achieved by establishing in a TIM 
module a program which can then be used to load even larger and more complex programs. The 
TIM modules have been created in such a way that upon reset they are waiting for a program to 
be loaded through a point-to-point port. Therefore, the boot up procedure is to send to such a 
port the sequence of commands necessary to set up a common bootstrap program. An Intel 
28F020 FLASH ROM (256 KByte) provides the storage needed for the download program 
storage, and an Altera 5 128 programmable controller provides the control for the process, 
including the addressing and sequencing of activities. 

D) TIM modules for Nodes 1,2, and 3. The first board provides the space necessary for three 
of the seven nodes needed for a HyperForest subsystem. Each of the nodes contains not only 
the required TIM module, but also an EPF8282 FLEX programmable controller to control the 
interaction of the node with the internal global bus, 74ACT16245 transceivers to isolate the 
global bus activity from the TIM module itself, and the appropriate resistor networks to match 
impedance and provide improved signal quality for the point-to-point connections. The use of 
the transceivers allows the various TIM modules to operate independently, isolating the global 
bus connection of each module from the corresponding connections of other modules. 

E) Interconnection methods. There are three basic connector systems in use on the subsystem. 
Already mentioned is the set of two 96-pin DIN connectors used for the VME connection; this 
set of connectors also supplies the power used on the board. Another connection which is 
needed is the connection between the two boards; this is accomplished with a 152 pin connector 
which utilized three rows of pins. This quantity of interconnections is needed for the address, 
data, and control lines of the global bus, plus the point-to-point connections needed between the 
second and third layer of the binary tree structure of the HyperForest architecture. The third set 
of connectors is included at the edge of the system, where 3 1 - and 5 1 - pin connectors are used to 
provide connections for 2- and 3-sets of point-to-point port signals. This allows the board to be 
connected to other HyperForest subsystems in the HyperForest system interconnect scheme. 
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F) Miscellaneous glue subsystems. These include a common oscillator for all TIM modules, a 
64 MHz oscillator needed by the VME bus subsystem chip, reset circuitry, including both 
power-up reset and operator-initiated reset, JTAG interface circuitry, and assorted pullup and 
impedance matching resistances. 

Included in Appendix A are the eighteen sheets of schematics which define the first board. Sheet 
1 contains the information for Node 1, including the TIM module, its interconnects to point-to- 
point connections, bus connections, and control lines. It also contains the bus transceivers with 
appropriate control lines. Sheets 2 and 3 contain the same information for Nodes 2 and 3. Sheet 
4 contains the reset circuitry, the oscillators, assorted pullups, and the serial PROMS that 
establish the circuitry of the RAM based programmable logic on the board. Sheet 5 contains the 
ROM for the boot code and the controller which controls its interaction with Node 1. Sheet 6 
contains the programmable controllers that control the bus interaction for Nodes 1,2, and 3. 
Sheet 7 contains the programmable controller that handles bus arbitration and access control to 
the bus for the nodes and the VME bus controller. Sheet 8 contains the JTAG header and 
associated circuitry. Sheets 9 and 10 contain the VME bus interface circuitry, while sheet 1 1 
contains the connectors for the VME bus interaction. Sheets 12 and 13 contain the 
communication port connectors, while sheet 14 shows the connector which is used to connect the 
two boards together. Sheets 15, 16, and 17 show the impedance networks to minimize noise on 
the point-to-point connections. Sheet 18 contains assorted pullups needed for the 
implementation, and sheet 19 shows the bypass capacitors used on the board. 

A layout of the second board of the '-board HyperForest subsystem is shown in Figure 14. 
This board duplicates many of the portions of the first board, yet has some unique features: 

A) Bus system. The control of the bus is handled by the circuitry on the first board, and hence 
the second board does not have responsibility for control. But it does have the appropriate 
circuitry at each 'TIM module to participate in the interactions required for global bus transfers. 

B) TIM modules for Nodes 4, 5 , 6 ,  and 7. As with the first board, with each of these TIM 
modules includes a EPF8282 FLEX programmable controller to control the bus interaction and 
appropriate bus transceivers and resister networks to handle interface with other system 
components. 

C) Interconnection system. The same connector types are present on the second board, and 
they have most of the same responsibilities. The 152 pin inter-board connector is used for global 
bus interactions imd point-to-point connection with the other nodes of the HyperForest 
subsystem. The edge is populated with 3 1- and 5 1-pin connectors for 2- and 3-sets of point-to- 
point connections used in HyperForest point-to-point interconnections. Also, two 96-pin DIN 
connectors are available as per VME specification. However, the only use for these connectors 
on this board is to provide power for the circuitry. 
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Included in Appendix B are the twenty sheets of schematics which defme the second board. 
Sheet 1 contains the information for Node 4, including the TIM module, its interconnects to 
point-to-point connections, bus connections, and control lines. It also contains the bus 
transceivers with appropriate control lines. Sheets 2,3, and 4 contain the same information for 
Nodes 5,6, and 7. Sheet 5 contains the clock drivers and the JTAG chain. Sheets 6 and 7 
contain the programmable controllers that control the bus interaction for Nodes 4,5,6,  and 7. 
Sheet 8 shows the connector which is used to connect the two boards together. Sheets 9, 10, 1 1, 
and 12 contain the connectors used for the communication links, while sheet 13 contains the 
VME bus connectors which supply power to the board. Sheets 14, 15, 16, 17, and 18 contain 
resistor networks for impedance matching on the point-to-point connections for the nodes. Sheet 
19 contains bypass capacitors used on the board, and Sheet 20 contains pullups used by 
integrated circuits on the board. 

Four sets of these boards were fabricated, and are ready for checkout. The checkout needs to 
veri@ that the programmable logic can appropriately control the bus interaction, the arbitration, 
and the interaction with the VME logic. The checkout also needs to create the code section 
necessary for the download sequence to load executable code into the system. Once this has been 
established, techniques useful for real-time operation in control applications can be implemented. 

V1I.- Communicating With 110 and Peripherals 

In the industrial automation world, recent years have seen a falling from favor of the traditional 
method of wiring sensors, actuators, and other devices directly to a control unit such as a 
Programmable Logic Controller (PLC) or a personal computer (PC). Discrete wiring is being 
replaced by “fieldbuses” or “devicebuses” that allow the connection of many devices (equipped 
with the appropriate communication electronics) to a single cable bus via tees in much the same 
manner as thin-net ethernet. The rationale for this approach is that the higher cost of the new 
communications-enabled devices is more than offset by the savings in wiring in applications 
where the slower response of the new devices (due to them sharing a single communications 
channel) is not an issue. 

This trend towards devicebuses in the industrial automation arena has been fortunate for 
HyperForest. Whereas the traditional approach to connecting peripheral devices would require a 
different hardware and software interface to the HyperForest architecture, all types of devices on 
a devicebus can be accessed through a single hardware/software interface to the devicebus. 
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At the time of this writing, there are many different competing fieldbus and devicebus standards. 
The more complex “fieldbus” standards such as Profibus are meant for communication with 
complex devices common in the process industries. Intermediate complexity “devicebuses” such 
as DeviceNet are intended for discrete manufacturing applications (e.g., assembly) where the 
devices range in complexity from a simple mechanical switch to moderately sophisticated devices 
such as pneumatic manifolds and motor drives. At the low end of the complexity scale, 
“bitbuses” such as AS1 can only communicate with simple odoff sensors and actuators. 

We selected DeviceNet for use with HyperForest because it is the standard with the most 
industry support within the US and the range of devices available for it is ideal for most robotics 
and automation applications 

DeviceNet is based on an automotive communications bus called Controller Area Network 
(CAN). CAN is a differential serial bus developed in Germany by Bosch for Mercedes Benz and 
BMW as a means for the various electronic control units in their automobiles to communicate 
with each other. Due to the economies of scale in the auto industry, the integrated circuits (ICs) 
needed to implement CAN communications quickly became plentiful and inexpensive. Allen 
Bradley (AB) in the US used CAN hardware with additional hardware and software protocol 
standards to create the open, but proprietary, DeviceNet standard. AB later donated the standard 
to a consortium of industrial automation companies called the Open DeviceNet Vendors 
Association (ODVA) to allay industry fears that AB would have an unfair advantage in the 
DeviceNet market or that it would close the standard once it became popular. 

At the lowest level, DeviceNet is a 5-wire bus (2 differential serial lines, 2 lines for 24 VDC, and 
a shield) that can operate at 125 kbaud, 250 kbaud, or 500 kbaud. The message packets are short; 
they consist of a header, up to 8 bytes of data, and a trailer. Devices transmit only when the bus 
is quiet; in the event 2 devices start transmitting simultaneously, the first device to transmit a 1 
but detect a 0 on the bus immediately stops transmitting, ceding control of the bus to the other 
device (as it turns out, the one with the lower address). Each device receives every message on 
the DeviceNet bus, but usually only processes packets intended for it. A given DeviceNet can 
have up to 64 devices with different addresses, but this is not a serious limitation in most 
applications since each device can have many I/O points andor functions. 

DeviceNet uses a master-slave control scheme. The DeviceNet master is a board or module that 
plugs into the bus of the system controller. These boards are available for several bus 
architectures including VME, ISA, PCMCIA, PClO4, as well as for several popular PLCs. The 
variety of available DeviceNet slave devices is extensive: discrete I/O, analog I/O, photoelectric 
sensors, AC motor starters, AC and DC motor drives, servo and stepper motor controllers, 
pneumatic manifolds, RS232 translators, barcode scanners, potentiometers, man-machine 
interfaces (MMIs), encoders, vacuum instruments, etc. Figure 15 shows a typical DeviceNet 
network installation. 

The typical application usually has a single DeviceNet master, in our case, the HyperForest 
VME chassis with an S-S Technologies DeviceNet VME interface board. The DeviceNet board 
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consists of a CPlJ that is loaded with scanner software that continually queries all known devices 
on the DeviceNet and writes the results in a section of dual port RAM that is accessible to the 
HyperForest via the VME bus. DeviceNet output devices are controlled in the same manner; 
HyperForest writes the appropriate data to the DeviceNet board’s dual port RAM, which the 
scanner process continually scans for changes and sends the appropriate commands encoded in 
packets to the DeviceNet wire. The high baud rates available, together with the short packet 
lengths, would seem to suggest that DeviceNet can have a high refresh rate. Unfortunately, the 
master-slave protocol slows performance considerably. Typical refresh rates tend to run in the 
tens of milliseconds, making DeviceNet inappropriate for some of the more demanding real-time 
applications. Also, it is arbitrated; hence, inderteminate (ie. not applicable to hard real-time 
applications). 

% AB a7 motor starters 

I 
10 AB Deviceinks+prox sensors 

AB Redistation pushbutton 

Festo pneumatic manifold w/I/O modules 

Fig. 15.- Typical DeviceNet Network 
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VI I I. - Con c I us i o n s 

The great advances in computer technology in the last few years made it possible to have large 
computational capacity at a relatively low cost. You can do today in a Pentium-Pro based 
systems what it took many older generation processors and specialized busses such as VMEbus 
or S-bus. Specialized architectures such as HyperForest will still have niche applications, but for 
the most part, a larger size of problem can be solved today with the advances in the Personal 
Computer industry such as Windows NT, Pentium-Pro processors, high speed networks, etc. 
The main advantages here being the wide availability of software tools, the number of people that 
know how to use them, and the low cost of the hardware. 

The work on this LDRD provides an architecture that can be tailored to a niche application in 
terms of number of processors (or computing power desired) and interconnects to sensors and 
other devices. We did not get to apply it to a big problem, but this work that will hopefully 
continue both at Sandia and at the University of New Mexico. 
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Schematics for Board 2 
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