3,273 research outputs found
Perceptually smooth timbral guides by state-space analysis of phase-vocoder parameters
Sculptor is a phase-vocoder-based package of programs
that allows users to explore timbral manipulation
of sound in real time. It is the product
of a research program seeking ultimately to perform
gestural capture by analysis of the sound a
performer makes using a conventional instrument.
Since the phase-vocoder output is of high dimensionality —
typically more than 1,000 channels per
analysis frame—mapping phase-vocoder output to
appropriate input parameters for a synthesizer is
only feasible in theory
Retrievals of X, X and X from portable, near-infrared Fourier transform spectrometer solar observations in Antarctica
The COllaborative Carbon Column Observing Network (COCCON) uses low-resolution, portable EM27/SUN Fourier transform spectrometers (FTSs) to make retrievals of column-averaged dry-air mole fractions (DMFs, represented as X) of CO, CH, CO and HO from near-infrared solar absorption spectra. The COCCON has developed rapidly over recent years and complements the Total Carbon Column Observing Network (TCCON).
In this work, we provide details of the first seasonal time series of near-infrared X, X and X retrievals from measurements made in Antarctica during the deployment of an EM27/SUN to the Arrival Heights laboratory on Ross Island over the austral summer of 2019–2020 under the auspices of the COCCON.
The DMFs of all three species were lower in Antarctica than at mid-latitude, and for X and X, the retrieved values were less variable. For X however, the variability was significantly greater and it was found that this was strongly correlated to the proximity of the polar vortex.
In order to ensure the stability of the instrument and the traceability of the retrievals, side-by-side comparisons to the TCCON station at Lauder, New Zealand and retrievals of the instrument line shape (ILS) were made before and after the measurements in Antarctica. These indicate that, over the course of the deployment, the instrument stability was such that the change in retrieved X was well below 0.1%.
The value of these data for satellite validation is demonstrated by making comparisons with the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 precursor (S5P) satellite.
The dataset is available from the COCCON central facility hosted by the ESA Atmospheric Validation Data Centre (EVDC): https://doi.org/10.48477/coccon.pf10.arrivalheights.R02 (Pollard, 2021)
Inclusion of Experimental Information in First Principles Modeling of Materials
We propose a novel approach to model amorphous materials using a first
principles density functional method while simultaneously enforcing agreement
with selected experimental data. We illustrate our method with applications to
amorphous silicon and glassy GeSe. The structural, vibrational and
electronic properties of the models are found to be in agreement with
experimental results. The method is general and can be extended to other
complex materials.Comment: 11 pages, 8 PostScript figures, submitted to J. Phys.: Condens.
Matter in honor of Mike Thorpe's 60th birthda
Characterizing the Interplay of Treatment Parameters and Complexity and Their Impact on Performance on an IROC IMRT Phantom Using Machine Learning
AIM OF THE STUDY: To elucidate the important factors and their interplay that drive performance on IMRT phantoms from the Imaging and Radiation Oncology Core (IROC).
METHODS: IROC\u27s IMRT head and neck phantom contains two targets and an organ at risk. Point and 2D dose are measured by TLDs and film, respectively. 1,542 irradiations between 2012-2020 were retrospectively analyzed based on output parameters, complexity metrics, and treatment parameters. Univariate analysis compared parameters based on pass/fail, and random forest modeling was used to predict output parameters and determine the underlying importance of the variables.
RESULTS: The average phantom pass rate was 92% and has not significantly improved over time. The step-and-shoot irradiation technique had significantly lower pass rates that significantly affected other treatment parameters\u27 pass rates. The complexity of plans has significantly increased with time, and all aperture-based complexity metrics (except MCS) were associated with the probability of failure. Random forest-based prediction of failure had an accuracy of 98% on held-out test data not used in model training. While complexity metrics were the most important contributors, the specific metric depended on the set of treatment parameters used during the irradiation.
CONCLUSION: With the prevalence of errors in radiotherapy, understanding which parameters affect treatment delivery is vital to improve patient treatment. Complexity metrics were strongly predictive of irradiation failure; however, they are dependent on the specific treatment parameters. In addition, the use of one complexity metric is insufficient to monitor all aspects of the treatment plan
Tele-monitoring of cancer patients’ rhythms during daily life identifies actionable determinants of circadian and sleep disruption
The dichotomy index (I < O), a quantitative estimate of the circadian regulation of daytime activity and sleep, predicted overall cancer survival and emergency hospitalization, supporting its integration in a mHealth platform. Modifiable causes of I < O deterioration below 97.5%—(I < O)low—were sought in 25 gastrointestinal cancer patients and 33 age- and sex-stratified controls. Rest-activity and temperature were tele-monitored with a wireless chest sensor, while daily activities, meals, and sleep were self-reported for one week. Salivary cortisol rhythm and dim light melatonin onset (DLMO) were determined. Circadian parameters were estimated using Hidden Markov modelling, and spectral analysis. Actionable predictors of (I < O)low were identified through correlation and regression analyses. Median compliance with protocol exceeded 95%. Circadian disruption—(I < O)low—was identified in 13 (52%) patients and four (12%) controls (p = 0.002). Cancer patients with (I < O)low had lower median activity counts, worse fragmented sleep, and an abnormal or no circadian temperature rhythm compared to patients with I < O exceeding 97.5%—(I < O)high—(p < 0.012). Six (I < O)low patients had newly-diagnosed sleep conditions. Altered circadian coordination of rest-activity and chest surface temperature, physical inactivity, and irregular sleep were identified as modifiable determinants of (I < O)low. Circadian rhythm and sleep tele-monitoring results support the design of specific interventions to improve outcomes within a patient-centered systems approach to health care
Pair Creation of Dilaton Black Holes
We consider dilaton gravity theories in four spacetime dimensions
parametrised by a constant , which controls the dilaton coupling, and
construct new exact solutions. We first generalise the C-metric of
Einstein-Maxwell theory () to solutions corresponding to oppositely
charged dilaton black holes undergoing uniform acceleration for general . We
next develop a solution generating technique which allows us to ``embed" the
dilaton C-metrics in magnetic dilaton Melvin backgrounds, thus generalising the
Ernst metric of Einstein-Maxwell theory. By adjusting the parameters
appropriately, it is possible to eliminate the nodal singularities of the
dilaton C-metrics. For (but not for ), it is possible to further
restrict the parameters so that the dilaton Ernst solutions have a smooth
euclidean section with topology , corresponding to
instantons describing the pair production of dilaton black holes in a magnetic
field. A different restriction on the parameters leads to smooth instantons for
all values of with topology .Comment: 22 pages, EFI-93-51, FERMILAB-Pub-93/272-A, UMHEP-393. (Asymptotics
of Ernst solutions clarified, typos repaired
The Orbiting Carbon Observatory (OCO-2) Tracks 2-3 Peta-Gram Increase in Carbon Release to the Atmosphere During the 2014-2016 El Nino
The powerful El Nio event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from satellites and ground based networks are analyzed together with in situ observations for the period of September 2014 to October 2016. From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2014, the most recent El Nio has contributed to an excess CO2 emission from the Earth's surface (land+ocean) to the atmosphere in the range of 2.4+/-0.2 PgC (1 Pg = 10(exp 15) g) over the period of July 2015 to June 2016. The excess CO2 flux is resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Nio. The annual total sink is estimated to be 3.9+/-0.2 PgC for the assumed fossil fuel emission of 10.1 PgC. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport
A geostatistical framework for quantifying the imprint of mesoscale atmospheric transport on satellite trace gas retrievals
National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions (X_(CO₂)) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO₂ observations and reliable representations of atmospheric transport. Since X_(CO₂) observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in X_(CO₂) and X_(H₂O) from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based X_(CO₂) and X_(H₂O) observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 X_(H₂O). For X_(CO₂), both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget
A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals
National Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 (OCO-2) satellite provides observations of total column-averaged CO2 mole fractions (XCO2) at high spatial resolution that may enable novel constraints on surface-atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along-track OCO-2 soundings. We compare high-pass-filtered (<250 km, spatial scales that primarily isolate mesoscale or finer-scale variations) along-track spatial variability in XCO2 and XH2O from OCO-2 tracks to temporal synoptic and mesoscale variability from ground-based XCO2 and XH2O observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along-track, high-frequency variability for OCO-2 XH2O. For XCO2, both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO-2 retrieval state vector are important drivers of the along-track variance budget.Plain Language SummaryNumerous efforts have been made to quantify sources and sinks of atmospheric CO2 at regional spatial scales. A common approach to infer these sources and sinks requires accurate representation of variability of CO2 observations attributed to transport by weather systems. While numerical weather prediction models have a fairly reasonable representation of larger-scale weather systems, such as frontal systems, representation of smaller-scale features (<250 km), is less reliable. In this study, we find that the variability of total column-averaged CO2 observations attributed to these fine-scale weather systems accounts for up to half of the variability attributed to local sources and sinks. Here, we provide a framework for quantifying the drivers of spatial variability of atmospheric trace gases rather than simply relying on numerical weather prediction models. We use this framework to quantify potential sources of errors in measurements of total column-averaged CO2 and water vapor from National Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 satellite.Key PointsWe developed a framework to relate high-frequency spatial variations to transport-induced temporal fluctuations in atmospheric tracersWe use geostatistical analysis to quantify the variance budget for XCO2 and XH2O retrieved from NASA’s OCO-2 satelliteAccounting for random errors, systematic errors, and real geophysical coherence in remotely sensed trace gas observations may yield improved flux constraintsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151988/1/jgrd55658.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151988/2/jgrd55658_am.pd
- …