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Abstract

We consider dilaton gravity theories in four spacetime dimensions parametrised by a

constant a, which controls the dilaton coupling, and construct new exact solutions. We

first generalise the C-metric of Einstein-Maxwell theory (a = 0) to solutions corresponding

to oppositely charged dilaton black holes undergoing uniform acceleration for general a.

We next develop a solution generating technique which allows us to “embed” the dilaton

C-metrics in magnetic dilaton Melvin backgrounds, thus generalising the Ernst metric

of Einstein-Maxwell theory. By adjusting the parameters appropriately, it is possible to

eliminate the nodal singularities of the dilaton C-metrics. For a < 1 (but not for a ≥ 1),

it is possible to further restrict the parameters so that the dilaton Ernst solutions have

a smooth euclidean section with topology S2 × S2 − {pt}, corresponding to instantons

* Address from 1st Oct. 1993: Relativity Group Department of Physics, University of Califor-

nia, Santa Barbara, CA 93106.
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describing the pair production of dilaton black holes in a magnetic field. A different

restriction on the parameters leads to smooth instantons for all values of a with topology

S2 × IR2.

1. Introduction

The idea that the topology of space might change in a quantum theory of gravity is an

old one [1]. The “canonical” approach to quantum gravity, however, rules out the possi-

bility from the start by taking the configuration space to be the space of three-geometries

on a fixed three-manifold and the “covariant” approach assumes a fixed background space-

time. Thus, the most natural framework for quantum gravity in which to investigate

topology changing processes seems to be the sum-over-histories. In the sum-over-histories

formulation a topology changing transition amplitude is given by a functional integral over

four-metrics on four-manifolds (cobordisms) with boundaries which agree with the initial

and final states. What conditions to place on the metrics summed over is a matter for

some debate. One approach is to only sum over euclidean metrics [2]. Another proposal is

to sum over almost everywhere lorentzian metrics, restricting the metrics to be causality

preserving (i.e. no closed time-like curves), in which case the issue of the necessary singu-

larities must be broached [3]. Although such functional integrals are ill-defined as yet, one

can still do calculations by assuming that they can be well approximated by saddle point

methods. An instanton, a euclidean solution that interpolates between the initial and final

states of a classically forbidden transition, is a saddle point for both the “euclidean” and

“lorentzian” functional integrals. We take the existence of an instanton as an indication

that the transition has a finite rate and must be taken into consideration.

One such instanton in Einstein-Maxwell theory is the euclideanised Ernst metric [4]

which is interpreted as describing the pair production of two magnetically charged Reissner-

Nordstrom black holes in a Melvin magnetic universe [5,6]. This is the gravitational ana-

logue of the Schwinger pair production of charged particles in a uniform electromagnetic

field. In this process the topology of space changes from IR3 to S2×S1 −{pt} correspond-

ing to the formation of two oppositely charged black holes whose throats are connected

by a handle. The calculation of the rate of this process leads to the observation that it is

enhanced over the production rate of monopoles by a factor eSbh where Sbh is the Hawking-

Bekenstein entropy of the black holes [7]. This supports the notion that the entropy counts

the number of “internal” states of the black hole.



Are similar processes described by instantons in other theories containing gravity? It is

known, for example, that both the low energy limit of string theory [8,9] and 5-dimensional

Kaluza-Klein theory [10,11,12] admit a family of charged black hole solutions. One may

ask if instantons exist which describe their pair production. An action which includes all

the above mentioned theories describes the interaction between a dilaton, a U(1) gauge

field and gravity and is given by

S =

∫

d4x
√−g

[

R − 2(∇φ)2 − e−2aφF 2
]

. (1.1)

For a = 0 this is just standard Einstein-Maxwell theory. For a = 1 it is a part of the

action describing the low-energy dynamics of string theory, while for a =
√

3 it arises

from 5-dimensional Kaluza-Klein theory. For each value of a, there exists a two parameter

family of black hole solutions (which we shall briefly review in section 2) labelled by the

mass m and the magnetic (or electric) charge q. That topology changing instantons for

(1.1) exist, at least for a < 1, describing the pair creation of such black holes, will be one

of the results of this paper.

It is important to note that we have used the “Einstein” metric to describe these

theories. Metrics rescaled by a dilaton dependent factor are also of physical interest and

may have different causal structures. For example, in string theory (a = 1) the “sigma-

model” metric gσ = e2φg is the metric that couples to the string degrees of freedom. If

we consider the magnetically charged black holes in this theory, then for m >
√

2q both

the Einstein metric and the sigma model metric have a singularity cloaked by an event

horizon. However, in the extremal limit, m =
√

2q, the Einstein metric has a naked

singularity, whereas in the sigma model metric the singularity disappears from the space-

time, down an infinitely long tube. In this limit the sigma model metric is geodesically

complete and moreover the upper bound on the curvature can be made as small as one

likes by choosing q large enough.

These properties of the sigma model metric are part of the motivation for using the

a = 1 theory to further understand the issue of information loss in the scattering of

matter with extremal black holes. The low-energy scattering of particles with such an

extremal black hole, including the effects of back reaction on the metric, has been studied in

[13,14,15]. One truncates to the s-wave sector of the theory and considers an effective two-

dimensional theory defined in the throat region. Using semi-classical techniques, it has been

argued that there may exist an infinite number of near degenerate states corresponding



to massless modes propagating down the throat. It was conjectured in [13,14,15] that

these remnants or “cornucopions” are the end-points of Hawking evaporation. The infinite

length of the throat allows for an arbitrarily large number of remnants, which can then

store an arbitrarily large amount of information.

One objection to this scenario is that if an infinite number of such remnants exist,

then we may expect them to each have a finite probability of being pair created. The

infinite number of species would then lead to divergences in ordinary quantum field theory

processes. A way around this objection was proposed in [16], where the rate of production

of these remnants in a magnetic field was estimated using instanton methods. It was argued

that the rate of pair production is not infinite, because the instanton would produce a pair

of throats connected by a finite length handle. The finite length of the throat would then

imply that only a finite number of remnants could be excited and that the total production

rate would be finite. A shortcoming of the arguments in [16], however, was that no exact

instanton solutions were constructed. Looking for such exact solutions was one of the

motivations for the present work.

The plan of the rest of the paper is as follows. In section 2 we present the dilaton gen-

eralisations of the C-metric for arbitrary dilaton coupling a. These describe two oppositely

charged dilaton black holes accelerating away from each other. We show that, just as in the

Einstein-Maxwell C-metric, there exist nodal singularities in the metric which cannot be

removed by any choice of period for the azimuthal coordinate. These can be thought of as

providing the forces necessary to accelerate the black holes. In Einstein-Maxwell theory,

string theory and Kaluza-Klein theory there are known transformations which generate

new solutions starting from a known static, axisymmetric solution. In section 3, we show

that such generating transformations exist for all a, and take flat space into dilaton mag-

netic Melvin universes. When applied to the C-metrics, these same transformations give

dilaton generalisations of the Ernst solution; choosing the parameters appropriately, the

magnetic field can provide exactly the right amount of acceleration to remove the nodal

singularities. In section 4, we discuss the euclidean section of the dilaton Ernst solutions.

To obtain a regular geometry, it is necessary that the Hawking temperatures of the black

hole and acceleration horizons be equal. For a < 1, we find that it is possible to do this

at non-zero temperature, and one obtains natural generalisations of the q = m instantons

discussed in [5,6] with topology S2×S2−{pt}. These instantons describe the formation of

a Wheeler wormhole on a spatial slice of a magnetic dilaton Melvin universe. For all values

of a, it is possible to obtain a smooth euclidean section in the limit that the two horizons



have zero temperature. These instantons have topology S2 × IR2. The physical interpre-

tation of these instantons, however, is unclear. Section 5 is a summary and discussion of

our results.

2. Dilaton C-metrics

2.1. Charged Black Holes in Dilaton Gravity

The equations of motion coming from the action (1.1) are given by

∇µ(e−2aφFµν) = 0

∇2φ+
a

2
e−2aφF 2 = 0

Rµν = 2∇µφ∇νφ+ 2e−2aφFµρF
ρ

ν − 1

2
gµνe

−2aφF 2.

(2.1)

These equations are invariant with respect to an electric-magnetic duality transformation,

under which the metric is unchanged and the new field strength F̃ and dilaton φ̃ are given

by

F̃µν = 1

2
e−2aφǫµνρσF

ρσ, φ̃ = −φ. (2.2)

We will only consider the magnetically charged solutions below, but because of this duality

our results also apply to the electric case.

For given a the equations of motion (2.1) admit a two parameter family of magnetically

charged black hole solutions given by 1 [8][9]

ds2 = −λ2dt2 + λ−2dr2 +R2(dθ2 + sin2 θdϕ2)

e−2aφ =
(

1 − r−
r

)
2a

2

(1+a2)
, Aϕ = qcosθ

λ2 =
(

1 − r+
r

)(

1 − r−
r

)

(1−a
2)

(1+a2)
, R2 = r2

(

1 − r−
r

)
2a

2

(1+a2)
.

(2.3)

Assuming r+ > r−, then r+ is the location of a black hole horizon. For a = 0, r− is the

location of the inner Cauchy horizon, however for a > 0 the surface r = r− is singular.

The parameters r+ and r− are related to the ADM mass m and total charge q by

m =
r+
2

+

(

1 − a2

1 + a2

)

r−
2
, q =

(

r+r−
1 + a2

)
1
2

. (2.4)

1 To obtain solutions where the dilaton asymptotically approaches an arbitrary constant φ0,

one can use the fact that the action is invariant under φ → φ + φ0, F → eaφ0F and the metric

left unchanged. We will suppress φ0 in the following.



The extremal limit occurs when r+ = r−.

Following [8] we introduce the “total metric”, ds2T , defined via a conformal rescaling

of the “Einstein” metric

ds2T = e2φ/ads2. (2.5)

For certain values of a this metric naturally appears in Kaluza-Klein theories [8]. For

a = 1 this is just the sigma model metric that couples to the string degrees of freedom.

For a < 1, in the extremal limit, the total metric is geodesically complete and the spatial

sections have the form of two asymptotic regions joined by a wormhole, one region being

flat, the other having a deficit solid angle. For a = 1 the geometry is that of an infinitely

long throat.

2.2. Dilaton C-Metric

In Einstein-Maxwell theory the C-metric can be interpreted as the spacetime corre-

sponding to two Reissner-Nordstrom black holes of opposite charge undergoing uniform

acceleration [17]. The generalisation of this spacetime to dilaton gravity is given by

ds2 =
1

A2(x− y)2
[

F (x)
{

G(y)dt2 −G−1(y)dy2
}

+ F (y)
{

G−1(x)dx2 +G(x)dϕ2
}]

e−2aφ =
F (y)

F (x)
, Aϕ = qx, F (ξ) = (1 + r−Aξ)

2a
2

(1+a2)

G(ξ) = Ḡ(ξ)(1 + r−Aξ)
(1−a

2)

(1+a2) , Ḡ(ξ) =
[

1 − ξ2(1 + r+Aξ)
]

.

(2.6)

Note that the form of G as a product of two terms is quite similar to the form of λ in

(2.3) and further, Ḡ is the cubic which appears in the uncharged C-metric in [17]. The

parameters q, r− and r+ are related as in (2.4).

The metric (2.6) can be shown to give various known metrics in the appropriate limits.

Setting r− = 0 gives the uncharged C-metric (a vacuum solution and independent of a).

Setting a = 0 gives the charged C-metric of Einstein-Maxwell theory, but in a slightly

non-standard form: the function G is a quartic with a linear term. To compare with the

form of the C-metric given in [17] one needs to change coordinates to obtain a quartic with

no linear term. The appropriate transformations are discussed in [17].

In the limit of zero acceleration, the metric (2.6) reduces to the metric (2.3) for a

single charged dilaton black hole. To see this, it is useful to use new coordinates given by

r = − 1

Ay
, T = A−1t. (2.7)



In these coordinates the metric (2.6) becomes

ds2 =
1

(1 + Arx)2
[

F (x)
{

−H(r)dT 2 +H−1(r)dr2
}

+R2(r)
{

G−1(x)dx2 +G(x)dϕ2
} ]

H(r) = (1 − r+
r

− A2r2)(1 − r−
r

)
1−a

2

(1+a2) ,

(2.8)

where the function R(r) is the same as that appearing in (2.3). Setting A = 0 and x = cosθ,

we return to the metric (2.3) of the dilaton black holes.

The metric (2.6) has two Killing vectors, ∂
∂t and ∂

∂ϕ . For the range of parameters

r+A < 2/(3
√

3), the function Ḡ(ξ) has three real roots. Denote these in ascending order

by ξ2, ξ3 and ξ4 and define ξ1 ≡ − 1

r−A
. One can show ξ3 < ξ4 and we further restrict

the parameters so that ξ1 < ξ2. The surface y = ξ1 is singular for a > 0, as can be seen

from the square of the field strength. This surface is analogous to the singular surface (the

‘would be’ inner horizon) of the dilaton black holes. The surface y = ξ2 is the black hole

horizon and the surface y = ξ3 is the acceleration horizon; they are both Killing horizons

for ∂
∂t

.

The coordinates (x, ϕ) in (2.6) are angular coordinates. To keep the signature of

the metric fixed, the coordinate x is restricted to the range ξ3 ≤ x ≤ ξ4 in which G(x)

is positive. The norm of the Killing vector ∂
∂ϕ

vanishes at x = ξ3 and x = ξ4, which

correspond to the poles of spheres surrounding the black holes. The axis x = ξ3 points

along the symmetry axis towards spatial infinity. The axis x = ξ4 points towards the other

black hole2. Spatial infinity is reached by fixing t and letting both y and x approach ξ3.

Letting y → x for x 6= ξ3 gives null or timelike infinity [18]. Since y → x is infinity, the

range of the coordinate y is −∞ < y < x for a = 0, ξ1 < y < x for a > 0.

2.3. Nodal Singularities

As is the case with the ordinary C-metric, it is not generally possible to choose the

range of ϕ such that the metric (2.6) is regular at both x = ξ3 and x = ξ4. In order to see

this, in a neighbourhood of each root define a new coordinate θ according to

θ =

∫ x

ξi

dx′
√

G(x′)
. (2.9)

2 The coordinates we are using only cover the region of spacetime where one of the black holes

is.



The angular part of the metric near one the poles x = ξi, i = 3, 4 then has the form

dl2 ≈ F (y)

A2(ξi − y)2

(

dθ2 +
1

4
λ2

i θ
2dϕ2

)

, (2.10)

where λi = |G′(ξi)| and one can show that λ3 < λ4. Let the range of ϕ be 0 < ϕ ≤ α,

then the deficit angles at the two poles δ3, δ4 are given by

δ3 = 2π − 1

2
αλ3 δ4 = 2π − 1

2
αλ4 (2.11)

We can remove the nodal singularity at x = ξ4 by choosing α = 4π/λ4, but then there

is a positive deficit angle running along the ξ3 direction. This corresponds to the black

holes being pulled by “cosmic strings” of positive mass per unit length µ = 1 − λ3/λ4.

Alternatively, we can choose α = 4π/λ3 to remove the nodal singularity at ξ3. This means

there is a negative deficit angle along the ξ4 direction, which can be interpreted as the

black holes being pushed apart by a “rod” of mass per unit length µ = 1 − λ4/λ3 (which

is negative). For a general choice of α, there will be nodal singularities on both sides. The

mass per unit length of the outer singularity will always be greater than that on the inside.

There is a degenerate case when the metric is free from nodal singularities. Letting

r+A = 2/(3
√

3) the roots ξ2 and ξ3 of the cubic Ḡ become coincident. In this limit the

range of x becomes ξ3 < x ≤ ξ4 since the proper distance between ξ3 and ξ4 diverges. The

point x = ξ3 disappears from the (x, ϕ) section which is no longer compact but becomes

topologically IR2, the sphere gaining an infinitely long tail. One can eliminate the nodal

singularity at x = ξ4 by choosing α = 4π/λ4. It might seem that the acceleration and black

hole horizons become coincident in this limit. This is not the case, however. The proper

distance between the horizons (at fixed x and t) tends to a constant as r+A → 2/(3
√

3).

This case will be discussed further in section 4.

3. Generating Dilaton Ernst

3.1. Generating new solutions

In the case of vanishing dilaton coupling (a = 0), Ernst [4] has shown that the nodal

singularities can be removed by including a magnetic field of the proper strength running

along the symmetry axis. The magnetic field provides the force necessary to accelerate

the black holes. The magnetic field can be added to the C-metric via an Ehlers-Harrison

type transformation [19], which takes an axisymmetric solution of the Einstein-Maxwell



equation into another such solution. The same transformation applied to flat spacetime

produces Melvin’s magnetic universe [20], which is the closest one can get to a constant

magnetic field in general relativity. To follow the same path as Ernst, we first need to

generalise the solution generating technique that he employed to dilaton gravity.

In the case of Kaluza-Klein theory (a =
√

3), this turns out to be quite simple. It

is known that the charged black holes in Kaluza-Klein theory can be generated from the

uncharged ones (i.e. Schwarzschild with an extra compact spatial dimension) by applying

a coordinate transformation mixing the time and internal coordinates, a “boost”, and

then re-identifying the new internal coordinate [12]. Similarly, we can add magnetic field

along the symmetry axis of an axisymmetric solution to Kaluza-Klein theory by doing

a transformation mixing the internal and azimuthal coordinates, a “rotation”. Applied

to flat space, this transformation reproduces the dilaton Melvin solution given in [8] for

a =
√

3. Together with the known form of the transformation without the dilaton field, the

Kaluza-Klein case provides sufficient clues to guess the correct transformation for general

dilaton coupling. In the string theory case (a = 1) this turns out to be one of the O(1, 2)

transformations3 that is known to act on the space of axisymmetric solutions [21].

Let (gµν , Aµ, φ) be an axisymmetric solution of (2.1). That is, all the fields are in-

dependent of the azimuthal coordinate ϕ. Let the other three coordinates be denoted by

{xi}. Suppose also that Ai = giϕ = 0.4 Then a new solution of (2.1) is given by

g′ij = Λ
2

1+a2 gij, g′ϕϕ = Λ
−

2
1+a2 gϕϕ,

e−2aφ′

= e−2aφΛ
2a

2

1+a2 , A′

ϕ = − 2

(1 + a2)BΛ
(1 +

(1 + a2)

2
BAϕ),

Λ = (1 +
(1 + a2)

2
BAϕ)2 +

(1 + a2)

4
B2gϕϕe

2aφ

(3.1)

The proof is presented in appendix A. This transformation generalises the “rotation”-type

transformation of Kaluza-Klein theory to all a. Although we will not write the explicit

transformations, it is possible to generalise the “boost”-type of transformation to all a,

also.

3 To obtain the full O(1, 2) group one needs to include the antisymmetric tensor field in the

action (1.1).
4 We can relax this condition and construct new solutions only assuming axisymmetry. How-

ever, the transformations are somewhat more involved and will not be needed for our purposes.



3.2. Dilaton Melvin

Applying these transformations to flat space in cylindrical coordinates we obtain the

dilaton Melvin solutions given by Gibbons and Maeda [8],

ds2 = Λ
2

1+a2
[

−dt2 + dρ2 + dz2
]

+ Λ
−

2
1+a2 ρ2dϕ2

e−2aφ = Λ
2a

2

1+a2 , Aϕ = − 2

(1 + a2)BΛ

Λ = 1 +
(1 + a2)

4
B2ρ2

(3.2)

The parameter B gives the strength of the magnetic field on the axis via B2 =
1

2
FµνF

µν
∣

∣

ρ=0
.

3.3. Dilaton Ernst

Applying the transformation (3.1) to the dilaton C-metric finally yields the dilaton

Ernst solution.

ds2 = (x− y)−2A−2Λ
2

1+a2
[

F (x)
{

G(y)dt2 −G−1(y)dy2
}

+ F (y)G−1(x)dx2
]

+ (x− y)−2A−2Λ
−

2
1+a2 F (y)G(x)dϕ2

e−2aφ = Λ
2a

2

1+a2
F (y)

F (x)
, Aϕ = − 2

(1 + a2)BΛ
(1 +

(1 + a2)

2
Bqx)

Λ = (1 +
(1 + a2)

2
Bqx)2 +

(1 + a2)B2

4A2(x− y)2
(1 − x2 − r+Ax

3)(1 + r−Ax)

(3.3)

Defining G(y, x) = Λ
−

2
1+a2G(x) the nodal singularities of the C-metric will be removed if

the period of φ is chosen to be 4π/|∂xG|ξ3
and we impose |∂xG|ξ3

= |∂xG|ξ4
. In the limit

r±A≪ 1, this constraint yields Newton’s law

mA ≈ Bq, (3.4)

where m and q are identified in terms of r+ and r− according to (2.4).

Note that we can read off the dilaton Melvin metric in “accelerated” coordinates from

(3.3) by setting r+ = r− = 0. The metric functions then reduce to

F = 1, G(x) = 1 − x2, Λ = 1 +
(1 + a2)B2

4A2(x− y)2
(1 − x2). (3.5)

This form of the dilaton Melvin solution is useful for studying in what sense the dilaton

Ernst solution approaches dilaton Melvin. This is discussed in detail in Appendix B. Here



we note that, if the value of the physical magnetic field parameter Bp is defined to be
√

1

2
FµνFµν on the axis as y → ξ3,

Bp = 1

2

∂xG

Λ
3
2

∣

∣

∣

∣

x=ξ3

Be. (3.6)

where Be is the parameter that appears in (3.3). This value of Bp is also the amount of

flux per unit area across a small area transverse to the axis in the limit y → ξ3 as shown

in Appendix B. In the limit r±A ≪ 1 this reduces to Bp = Be. Further, as discussed in

Appendix B, we find coordinates in which the dilaton Ernst metric (3.3) approaches the

dilaton Melvin metric (3.2) near the outer axis for r = 1

x−y
→ ∞.

4. Dilaton Instantons

The above solutions describe two dilaton black holes accelerating away from each

other along the axis of a dilaton Melvin magnetic universe. Euclideanising (3.3) by setting

τ = it, we find that, just as in the a = 0 case, another condition must be imposed on the

parameters in order to obtain a regular solution. The condition arises in order to eliminate

conical singularities at both the black hole and acceleration horizons with a single choice

of the period of τ . This is equivalent to demanding that the Hawking temperatures of the

two horizons are equal.

In terms of the metric function G(y) appearing in (3.3), the period of τ is taken to be

4π/|G′(ξ2)| and the constraint is

|G′(ξ2)| = |G′(ξ3)| , (4.1)

yielding
(

ξ2 − ξ1
ξ3 − ξ1

)

1−a
2

1+a2

(ξ4 − ξ2)(ξ3 − ξ2) = (ξ4 − ξ3)(ξ3 − ξ2). (4.2)

Recall that we have restricted our parameters so that ξ4 > ξ3 ≥ ξ2 > ξ1. For all values of

a, (4.2) can be solved by demanding that the horizons have zero temperature i.e. ξ2 = ξ3.

We will refer to these as type I instantons. For a < 1, the first factor on the left hand side

of (4.2) is smaller than one, and there is also a second solution, which we will call type II

instantons. For a ≥ 1, the first factor on the left is greater than one, corresponding to the

temperature of the black hole horizon always being greater than the temperature of the

acceleration horizon, and there are no other solutions.



We first consider the type II solutions with a < 1. These generalise the regular

euclidean metrics considered in the a = 0 case [5,6,7]; the condition (4.2) is the analogue

of the q = m condition on the parameters discussed in those papers. In the limit r±A << 1,

for a < 1 one can show that the condition (4.2) leads to r+ = r−. Since we have chosen

the parameters so that there are no nodal singularities on the t, y and x, ϕ spheres, it is

clear that the topology of these spacetimes is S2 × S2 − {pt} where the removed point is

x = y = ξ3.

This instanton is readily interpreted as a bounce: the surface defined by τ = 0 and

τ = π has topology S2 × S1 − pt, which is that of a wormhole attached to a spatial slice

of Melvin and is the zero momentum initial data for the lorentzian ernst solution. In

addition the solution tends to the Melvin solution at euclidean infinity (see appendix B).

The bounce describes the pair creation of a pair of oppositely charged dilaton black holes

in a magnetic field which subsequently uniformly accelerate away from each other. From

the metric we deduce that there is a horizon sitting inside the wormhole throat, located at

a finite proper distance from the mouth.

Turning to the type I instantons, we note that this is again the case of two coincident

roots, which has been discussed above in section 2.3 for B = 0. There it was pointed

out that there are no nodal singularities even in the absence of a magnetic field, and

that consequently there is no restriction on the value of B. The apparent coincidence of

the two horizons is an artifact of a poor choice of coordinates and it can be shown that

the proper distance between the horizons remains finite as the roots become coincident.

Below, we exhibit a coordinate change, originally used by Ginsparg and Perry to study

Schwarzschild-DeSitter instantons [22], which makes this explicit for the C-metrics.

In (2.6) let r+A = 2/(3
√

3) − ǫ2/
√

3, so that the limit of coincident roots is ǫ → 0.

Specifically, introducing y0 = −
√

3(1 + 7

6
ǫ2) the roots to order ǫ2 are

ξ2,3 = y0 ∓
√

3ǫ

ξ4 =

√
3

2
(1 +

1

6
ǫ2).

(4.3)

Writing the dilaton C-metric (2.6) in the coordinates

χ = cos−1

(

1√
3ǫ

(y − y0)

)

, ψ =
√

3ǫt (4.4)



and taking the limit ǫ→ 0, then gives

ds2 = A−2(x+
√

3)−2

[

F (x)

{

−F (−
√

3)
1−a

2

2a2 sin2 χdψ2 + F (−
√

3)
a
2
−1

2a2 dχ2

}

+ F (−
√

3)
{

G−1(x)dx2 +G(x)dϕ2
}

]

, Aϕ = qx,

e−2aφ =
F (−

√
3)

F (x)
, G(x) = − 2

3
√

3
(x+

√
3)2(x−

√
3/2)(1 + r−Ax)

1−a
2

1+a2 .

(4.5)

We may then apply the solution generating transformations (3.1) with arbitrary pa-

rameter B, though we will not do this explicitly here. Euclideanising (4.5) by setting

Ψ = iψ, we see that it is possible to eliminate the conical singularities at the north and

south poles of the (Ψ, χ) section by making Ψ periodic with period 2π
(

1 −
√

3r−A
)

(a
2
−1)

(2a2) .

Indeed, the (Ψ, χ) section is a round sphere and the topology of this solution is S2 × IR2,

in contrast to the type II instantons. It is not clear what, if any, the physical significance

of these instantons may be.

5. Discussion

The instantons presented in section 4 suggest that topology changing processes can

occur in dilaton gravity for a < 1. Specifically, the type II instantons describe the pair

creation in a uniform magnetic field of an oppositely charged pair of a < 1 dilaton black

holes. The rate of production of these black holes can be estimated in the semi-classical

approximation by calculating the action [23].

It is interesting that the type II instantons exist only for a < 1. The interpretation

of the type I instantons which exist for all a is unclear, especially since they exist for any

value of the magnetic field. It therefore appears to be difficult to estimate the production

rate of charged black holes in theories with a ≥ 1 using semi-classical techniques.

Including additional matter fields may yield one way of modifying the type II solutions

to obtain instantons for a ≥ 1. In particular, in [24] it was argued that in the Einstein-

Maxwell-Higgs theory which admits cosmic strings, euclidean solutions exist which corre-

spond to a string world sheet wrapped around the horizon of a black hole. The effect of the

string is to cut out a “wedge” from the (r, t) section of euclidean Schwarzschild, an effect

which could be approximated in a vacuum theory by allowing a conical singularity at the

horizon with a specified deficit. Similarly, for a = 1 say, cosmic strings could be added to



the model (1.1), in which case the type II instanton with a certain conical singularity in

the (t, y) section could describe the (cosmic string induced) pair creation of a = 1 black

holes.

Another interesting possibility is that the physics of black hole pair production for

a ≥ 1 is not so simply related to regular euclidean instantons. In reference [25] it was shown

that the thermodynamic behavior of charged black holes with a > 1 differs from that given

by the naive interpretation of their euclidean sections. For 0 ≤ a < 1 the temperature of

the extremal black holes goes to zero and Hawking radiation is extinguished, as one would

expect. For a > 1, however, the temperature of a black hole, given by the periodicity

of its euclidean section, diverges as extremality is approached, a result that was regarded

as puzzling [9]. This puzzle was partially resolved in [25], where it was shown that, for

a > 1, the Hawking radiation is in fact shut off by infinite grey body factors. For a = 1

the temperature of the extremal black hole approaches a constant and the results of the

analysis in [25] are inconclusive. In our case, demanding regularity of the euclidean section

of the dilaton Ernst metric is equivalent to requiring that the black hole be in thermal

equilibrium with the acceleration radiation. It is tempting to suspect that the inability

to achieve this (for nonzero temperature) for a ≥ 1 is somehow related to the physics

uncovered in [25]. The study of black hole pair production with a ≥ 1 would then require

more subtle methods.

In the introduction, we summarised the cornucopion scenario for resolving the para-

doxes associated with information loss in the scattering of particles from extremal a = 1

dilaton black holes. In this scenario it is important that the extremal black hole is non-

singular, with an infinitely long throat leading to a second null infinity. Since the extremal

black hole geometries (using the total metric (2.5)) for 0 < a < 1 also have this property, it

is natural to conjecture that these models all admit cornucopion type scenarios. Moreover,

the instantons we have constructed above indicate that for 0 < a < 1 there may not be a

problematic infinite pair production of cornucopions in a magnetic field. Firstly, we expect

the action of the instanton to be finite. Furthermore, since the created wormholes have

finite length it would appear that if one included matter fields and calculated the one-loop

determinants, one would not be including the infinite number of states living far down the

static wormholes5. In conclusion, one expects the pair production rate of cornucopions to

be finite since a cornucopion is not an elementary particle but is deeply interconnected

5 We note however, that this logic has been questioned in ref. [26].



with the geometry of spacetime. As we have noted, we cannot say anything definite about

the case a = 1. It would be interesting to understand the implications of our exact results

for the approximate instantons presented in [16].

Note Added: We note that the dilaton Ernst solution (3.3) does not asymptote

to the dilaton Melvin solution (3.2) although the metrics do match. A comparison of the

gauge field and dilaton for (3.3) and (3.2) shows that the solutions are related by a constant

shift in the dilaton and rescaling of the gauge field as in footnote 1. The details of this are

given in [23].
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Appendix A.

Suppose that we have a solution to (2.1) that is axisymmetric, i.e. independent of the

azimuthal coordinate ϕ, and further satisfies Ai = giϕ = 0, where xi are the other three

coordinates. We prove that the transformations (3.1) generate a new solution by showing

that the the transformations leave the action (1.1) invariant. We first rewrite the action

in terms of the rescaled total metric (2.5) to obtain

S =

∫

d4x
√
−gT e

−2φ/a

[

RT +

(

6 − 2a2

a2

)

(∇φ)2 − e2φ 1−a
2

a F 2

]

(A.1)

where indices are raised with the inverse of the total metric.

Introducing the definitions

3gij = gTij , V = gTϕϕ

φ̃ = φ− a

4
logV,

(A.2)



we can recast the action into the form

S = α

∫

d3x
√

− 3ge−2φ̃/a
[

3R +
6 − 2a2

a2
∂iφ̃∂

iφ̃− a2 − 1

a
V −1∂iφ̃∂

iV

− 1 + a2

8
V −2∂iV ∂

iV − 2e2φ̃ 1−a
2

a V −
1+a

2

2 ∂iAϕ∂
iAϕ

]

(A.3)

where we have carried out the integration over ϕ assuming its range is 0 ≤ ϕ ≤ α. The

virtue of these definitions is that the transformations (3.1) now take the simple form

3g′ij = 3gij

V ′ = Λ
−4

1+a2 V

φ̃′ = φ̃

A′

ϕ = − 2

(1 + a2)BΛ
(1 +

(1 + a2)

2
BAϕ)

(A.4)

To complete the proof a straightforward calculation shows that the Lagrangian is invariant

under these transformations.

Appendix B.

B.1. Determination of the magnetic flux

Here we will determine the value of the physical magnetic field parameter, Bp. The

magnetic flux through a small area around the axis is given by

∆flux =

∫

daŷB
ŷ =

∫

dϕdx∂xAϕ

≃ ∂Aϕ

∂x

∣

∣

∣

∣

x=ξ3

∆ϕ∆x
(B.1)

The flux per unit area in the limit y → ξ3 in dilaton Ernst is then given by

Bp =
∆flux

∆area

∣

∣

∣

∣

x=ξ3

= 1

2

∂xG

Λ
3
2

∣

∣

∣

∣

x=ξ3

Be. (B.2)

and in the limit r±A ≪ 1 reduces to Bp = Be. It is the same relation one gets from just

matching FµνF
µν on the axis.



B.2. Matching the metric near the axis

We now show that the dilaton Ernst metric approaches the dilaton Melvin metric near

the outer axis as r → ∞. Note that for the euclidean section the outer axis, x, y → ξ3, is the

only place where r → ∞. We start with the dilaton Melvin metric expressed in accelerated

coordinates, as discussed in section 3.3. There is then an acceleration parameter Ā at our

disposal in the matching. Near the axis G(x) ≃ λ3(x − ξ3), where λ3 = ∂xG|x=ξ3
. Make

the following coordinate transformation in the dilaton Ernst metric (3.3)

t̄ = 1

2
λ3t, ȳ = − y

ξ3
, ϕ̄ =

λ3ϕ

2Λ(ξ3)
2

1+a2

, ρ̄ =

(

2(ξ3 − x)

ξ3

)

1

2

. (B.3)

Near the axis the dilaton Ernst metric then has the form

ds2ernst ≃
−2ξ3F (ξ3)Λ(ξ3)

2
1+a2

λ3(1 + ȳ2)A2ξ23

[

2(ȳ + 1)dt̄2 − dȳ2

2(1 + ȳ)
+ ρ̄2dϕ̄2 + dρ̄2

]

(B.4)

We can make a similar coordinate transformation on the accelerated form of the dilaton

Melvin metric near the axis to get

ds2melvin ≃ 1

Ā2(1 + ȳ)2

[

2(ȳ + 1)dt̄2 − dȳ2

2(1 + ȳ)
+ ρ̄2dϕ̄2 + dρ̄2

]

(B.5)

These two are the same if we identify the acceleration of the Melvin coordinate system Ā

according to
1

Ā2
= − 2

A2λ3ξ3
F (ξ3)Λ(ξ3)

2
1+a2 (B.6)

Since the choice of Ā is just a choice of coordinates, this shows that the two metrics are

the same near the axis.

We note that in the preceding calculation, we took the limit x, y → ξ3 in the manner

x− ξ3 → 0, y − ξ3 ∼ (x− ξ3)
q, q < 1

2
(B.7)

which lets r2G(x) → 0 on the axis. Choosing q > 1

2
gives an artificially singular slicing of

the spacetime. Taking the limit for q = 1

2
shifts the constant Λ(ξ3).
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