708 research outputs found

    A burst from a thermonuclear runaway on an ONeMg white dwarf

    Get PDF
    Studies which examine the consequences of accretion, at rates of 10(exp -9) solar mass/yr and 10(exp -10) solar mass/yr, onto an ONeMg white dwarf with a mass of 1.35 solar masses are performed. In these studies, a Lagrangian, hydrodynamic, one-dimensional computer code was used. The code now includes a network with 89 nuclei up to Ca-40, elemental diffusion, new opacities, and new equation of state. The initial abundance distribution corresponded to a mixture that was enriched to either 25, 50, or 75 percent in products of carbon burning. The remaining material in each case is assumed to have a solar composition. The evolution of the thermonuclear runaway in the 1.35 solar mass white dwarf, with M = 10(exp -9) solar mass, produced peak temperatures in the shell source exceeding 300 million degrees. The sequence produced significant amounts of Na-22 from proton captures onto Ne-20 and significant amounts of Al-26 from proton captures on Mg-24. This sequence ejected 5.2 x 10(exp -6) solar mass moving with speeds from approximately 100 km/s to 2300 km/s. When the mass accretion rate was decreased to 10(exp -10) solar mass, the resulting thermonuclear runaway produced a shock that moved through the outer envelope of the white dwarf and raised the surface luminosity to L greater than 10(exp 7) solar luminosity and the effective temperature to values exceeding 10(exp 7) K. The interaction of the material expanding from off of the white dwarf with the accretion disk should produce a burst of gamma-rays

    The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene" and topological insulators

    Full text link
    Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials "beyond graphene" and novel topological phases of matter. While surface oxidation in ambient conditions was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling

    Scaling properties of three-dimensional magnetohydrodynamic turbulence

    Full text link
    The scaling properties of three-dimensional magnetohydrodynamic turbulence are obtained from direct numerical simulations of decaying turbulence using 5123512^3 modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology.In the case of hyperresistivity, the structure functions exhibit a clear scaling range yielding absolute values of the scaling exponents ζp\zeta_p. The scaling exponents agree with a modified She-Leveque model ζp=p/9+1(1/3)p/3\zeta_p=p/9 + 1 - (1/3)^{p/3}, corresponding to Kolmogorov scaling but sheet-like geometry of the dissipative structures

    Statistical anisotropy of magnetohydrodynamic turbulence

    Full text link
    Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD) turbulence without and with mean magnetic field are analyzed by higher-order two-point statistics. The turbulence exhibits statistical anisotropy with respect to the direction of the local magnetic field even in the case of global isotropy. A mean magnetic field reduces the parallel-field dynamics while in the perpendicular direction a gradual transition towards two-dimensional MHD turbulence is observed with k3/2k^{-3/2} inertial-range scaling of the perpendicular energy spectrum. An intermittency model based on the Log-Poisson approach, ζp=p/g2+1(1/g)p/g\zeta_p=p/g^2 +1 -(1/g)^{p/g}, is able to describe the observed structure function scalings.Comment: 4 pages, 3 figures. To appear in Phys.Rev.

    Current-sheet formation in incompressible electron magnetohydrodynamics

    Get PDF
    The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local and nonlocal nonlinear approximations are introduced and partially analyzed that are generalizations of the previously known exactly solvable local model neglecting electron inertia. Finally, estimations are made that predict finite-time singularity formation for a class of hydrodynamic models intermediate between that local model and the Eulerian hydrodynamics.Comment: REVTEX4, 5 pages, no figures. Introduction rewritten, new material and references adde

    Impact of observational uncertainties on universal scaling of MHD turbulence

    Full text link
    Scaling exponents are the central quantitative prediction of theories of turbulence and in-situ satellite observations of the high Reynolds number solar wind flow have provided an extensive testbed of these. We propose a general, instrument independent method to estimate the uncertainty of velocity field fluctuations. We obtain the systematic shift that this uncertainty introduces into the observed spectral exponent. This shift is essential for the correct interpretation of observed scaling exponents. It is sufficient to explain the contradiction between spectral features of the Elsasser fields observed in the solar wind with both theoretical models and numerical simulations of Magnetohydrodynamic turbulence

    Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science

    Full text link
    The study of chemical processes on solid surfaces is a powerful tool to discover novel physicochemical concepts with direct implications for processes based on chemical reactions at surfaces, largely exploited by industry. Recent upgrades of experimental tools and computational capabilities, as well as the advent of two-dimensional materials, have opened new opportunities and challenges for surface science. In this Perspective, we highlight recent advances in application fields strictly connected to novel concepts emerging in surface science. Specifically, we show for selected case-study examples that surface oxidation can be unexpectedly beneficial for improving the efficiency in electrocatalysis (the hydrogen evolution reaction and oxygen evolution reaction) and photocatalysis, as well as in gas sensing. Moreover, we discuss the adsorption-assisted mechanism in membrane distillation for seawater desalination, as well as the use of surface-science tools in the study of Li-ion batteries. In all these applications, surface-science methodologies (both experimental and theoretical) have unveiled new physicochemical processes, whose efficiency can be further tuned by controlling surface phenomena, thus paving the way for a new era for the investigation of surfaces and interfaces of nanomaterials. In addition, we discuss the role of surface scientists in contemporary condensed matter physics, taking as case-study examples specific controversial debates concerning unexpected phenomena emerging in nanosheets of layered materials, solved by adopting a surface-science approach. © the Owner Societies 2020

    Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodal-Line Semimetals

    Full text link
    Materials exhibiting nodal-line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal-line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface-science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimU.S. Department of Energy, USDOE: DE-SC0014208A.P. thanks Elettra Sincrotrone Trieste S.C.p.A. for financial support. Z.M. thanks the support by the U.S. Department of Energy under grant DE-SC0014208 for material synthesis. This work was partly performed in the framework of the Nanoscience Foundry and Fine Analysis facility (NFFA-MIUR Italy Progetti Internazionali)

    Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al

    Full text link
    Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by using all available experimental information on 24Al excitation energies. Proton and gamma-ray partial widths for astrophysically important resonances are derived from shell model calculations. Correspondences of experimentally observed 24Al levels with shell model states are based on application of the isobaric multiplet mass equation. Our new rates suggest that the 23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20 region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses epsfig.sty), accepted for publication in Phys. Rev.
    corecore