37 research outputs found
Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198478
Blue supergiant stars are known to display photometric and spectroscopic
variability that is suggested to be linked to stellar pulsations. Pulsational
activity in massive stars strongly depends on the star's evolutionary stage and
is assumed to be connected with mass-loss episodes, the appearance of
macroturbulent line broadening, and the formation of clumps in the wind. To
investigate a possible interplay between pulsations and mass-loss, we carried
out an observational campaign of the supergiant 55 Cyg over a period of five
years to search for photospheric activity and cyclic mass-loss variability in
the stellar wind. We modeled the H, He I, Si II and Si III lines using the
nonlocal thermal equilibrium atmosphere code FASTWIND and derived the
photospheric and wind parameters. In addition, we searched for variability in
the intensity and radial velocity of photospheric lines and performed a moment
analysis of the line profiles to derive frequencies and amplitudes of the
variations. The Halpha line varies with time in both intensity and shape,
displaying various types of profiles: P Cygni, pure emission, almost complete
absence, and double or multiple peaked. The star undergoes episodes of variable
mass-loss rates that change by a factor of 1.7-2 on different timescales. We
also observe changes in the ionization rate of Si II and determine a
multiperiodic oscillation in the He I absorption lines, with periods ranging
from a few hours to 22.5 days. We interpret the photospheric line variations in
terms of oscillations in p-, g-, and strange modes. We suggest that these
pulsations can lead to phases of enhanced mass loss. Furthermore, they can
mislead the determination of the stellar rotation. We classify the star as a
post-red supergiant, belonging to the group of alpha Cyg variables.Comment: 20 pages, 18 figures, 3 tables, accepted to Astronomy & Astrophysic
The non-convex shape of (234) Barbara, the first Barbarian
Asteroid (234) Barbara is the prototype of a category of asteroids that has
been shown to be extremely rich in refractory inclusions, the oldest material
ever found in the Solar System. It exhibits several peculiar features, most
notably its polarimetric behavior. In recent years other objects sharing the
same property (collectively known as "Barbarians") have been discovered.
Interferometric observations in the mid-infrared with the ESO VLTI suggested
that (234) Barbara might have a bi-lobated shape or even a large companion
satellite. We use a large set of 57 optical lightcurves acquired between 1979
and 2014, together with the timings of two stellar occultations in 2009, to
determine the rotation period, spin-vector coordinates, and 3-D shape of (234)
Barbara, using two different shape reconstruction algorithms. By using the
lightcurves combined to the results obtained from stellar occultations, we are
able to show that the shape of (234) Barbara exhibits large concave areas.
Possible links of the shape to the polarimetric properties and the object
evolution are discussed. We also show that VLTI data can be modeled without the
presence of a satellite.Comment: 10 pages, 6 figure
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
Spectroscopic survey of Kepler stars – II. FIES/NOT observations of A- and F-type stars
We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin i, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature
Dysregulated Expression of Both the Costimulatory CD28 and Inhibitory CTLA-4 Molecules in PB T Cells of Advanced Cervical Cancer Patients Suggests Systemic Immunosuppression Related to Disease Progression
Cervical cancer (CC) occurs more frequently in women who are immunosuppressed, suggesting that both local and systemic immune abnormalities may be involved in the evolution of the disease. Costimulatory CD28 and inhibitory CTLA-4 molecules expressed in T cells play a key role in the balanced immune responses. There has been demonstrated a relation between CD28, CTLA-4, and IFN genes in susceptibility to CC, suggesting their importance in CC development. Therefore, we assessed the pattern of CD28 and CTLA-4 expression in T cells from PB of CC patients with advanced CC (stages III and IV according to FIGO) compared to controls. We also examined the ability of PBMCs to secrete IFN-gamma. We found lower frequencies of freshly isolated and ex vivo stimulated CD4 + CD28+ and CD8 + CD28+ T cells in CC patients than in controls. Loss of CD28 expression was more pronounced in the CD8+ T subset. Markedly increased proportions of CTLA-4+ T cells in CC patients before and after culture compared to controls were also observed. In addition, patients’ T cells exhibited abnormal kinetics of surface CTLA-4 expression, with the peak at 24 h of stimulation, which was in contrast to corresponding normal T cells, revealing maximum CTLA-4 expression at 72 h of stimulation. Of note, markedly higher IFN-gamma concentrations were shown in supernatants of stimulated PBMCs from CC patients. Conclusions: Our report shows the dysregulated CD28 and CTLA-4 expression in PB T cells of CC patients, which may lead to impaired function of these lymphocytes and systemic immunosuppression related to disease progression
Non-convex model of the binary asteroid (809) Lundia and its density estimation
International audienceIntroduction: (809) Lundia was classified as a V-type asteroid in the Flora family (Florczak et.al. 2002). The binary nature of (809) Lundia was discovered in September 2005 based on photometric observations. The first modeling of the Lundia synchronous binary system was based on 22 lightcurves obtained at Borowiec and Pic du Midi Observatories during two oppositions in 2005/2006 and 2006/2007. Two methods of modeling --- modified Roche ellipsoids and kinematic --- gave similar parameters for the system (Kryszczynska et al. 2009). The poles of the orbit in ecliptic coordinates were: longitude 118° and latitude 28° in the modified Roche model and 120°, 18°, respectively, in the kinematic model. The orbital period obtained from the lightcurve analysis as well as from modeling was 15.418 h. The obtained bulk density of both components was 1.64 or 1.71 g/ccm
Non-convex model of the binary asteroid (809) Lundia and its density estimation
International audienceIntroduction: (809) Lundia was classified as a V-type asteroid in the Flora family (Florczak et.al. 2002). The binary nature of (809) Lundia was discovered in September 2005 based on photometric observations. The first modeling of the Lundia synchronous binary system was based on 22 lightcurves obtained at Borowiec and Pic du Midi Observatories during two oppositions in 2005/2006 and 2006/2007. Two methods of modeling --- modified Roche ellipsoids and kinematic --- gave similar parameters for the system (Kryszczynska et al. 2009). The poles of the orbit in ecliptic coordinates were: longitude 118° and latitude 28° in the modified Roche model and 120°, 18°, respectively, in the kinematic model. The orbital period obtained from the lightcurve analysis as well as from modeling was 15.418 h. The obtained bulk density of both components was 1.64 or 1.71 g/ccm
Non-convex model of the binary asteroid (809) Lundia and its density estimation
International audienceIntroduction: (809) Lundia was classified as a V-type asteroid in the Flora family (Florczak et.al. 2002). The binary nature of (809) Lundia was discovered in September 2005 based on photometric observations. The first modeling of the Lundia synchronous binary system was based on 22 lightcurves obtained at Borowiec and Pic du Midi Observatories during two oppositions in 2005/2006 and 2006/2007. Two methods of modeling --- modified Roche ellipsoids and kinematic --- gave similar parameters for the system (Kryszczynska et al. 2009). The poles of the orbit in ecliptic coordinates were: longitude 118° and latitude 28° in the modified Roche model and 120°, 18°, respectively, in the kinematic model. The orbital period obtained from the lightcurve analysis as well as from modeling was 15.418 h. The obtained bulk density of both components was 1.64 or 1.71 g/ccm
Combining 3D Lightcurve Modeling and Spitzer Infrared Observations: 1313 Berna
International audienceMid-infrared spectroscopic observations from the Spitzer Space Telescope coupled with ground-based photometric observations help characterizing the dynamic and interior composition of binary asteroids. Key physical parameters such as, bulk density, porosity and angular momentum can be constrained and shed light, in turn, on their internal structure and formation mechanisms
Combining 3D Lightcurve Modeling and Spitzer Infrared Observations: 1313 Berna
International audienceMid-infrared spectroscopic observations from the Spitzer Space Telescope coupled with ground-based photometric observations help characterizing the dynamic and interior composition of binary asteroids. Key physical parameters such as, bulk density, porosity and angular momentum can be constrained and shed light, in turn, on their internal structure and formation mechanisms