545 research outputs found

    Informed perspectives on human annotation using neural signals

    Get PDF
    In this work we explore how neurophysiological correlates related to attention and perception can be used to better understand the image-annotation task. We explore the nature of the highly variable labelling data often seen across annotators. Our results indicate potential issues with regard to ‘how well’ a person manually annotates images and variability across annotators. We propose such issues arise in part as a result of subjectively interpretable instructions that may fail to elicit similar labelling behaviours and decision thresholds across participants. We find instances where an individual’s annotations differ from a group consensus, even though their EEG (Electroencephalography) signals indicate in fact they were likely in consensus with the group. We offer a new perspective on how EEG can be incorporated in an annotation task to reveal information not readily captured using manual annotations alone. As crowd-sourcing resources become more readily available for annotation tasks one can reconsider the quality of such annotations. Furthermore, with the availability of consumer EEG hardware, we speculate that we are approaching a point where it may be feasible to better harness an annotators time and decisions by examining neural responses as part of the process. In this regard, we examine strategies to deal with inter-annotator sources of noise and correlation that can be used to understand the relationship between annotators at a neural level

    Overcoming Operational Challenges to Ebola Case Investigation in Sierra Leone.

    Get PDF
    The Ebola virus disease (EVD) epidemic that hit West Africa in 2013 was the worst outbreak of EVD in recorded history. While much has been published regarding the international and national-level EVD responses, there is a dearth of literature on district-level coordination and operational structures, successes, and failures. This article seeks to understand how the EVD response unfolded at the district level, namely the challenges to operationalizing EVD surveillance over the course of the outbreak in Port Loko and Kambia districts of Sierra Leone. We present here GOAL Global's understanding of the fundamental challenges to case investigation operations during the EVD response, including environmental and infrastructural, sociocultural, and political and organizational challenges, with insight complemented by a survey of 42 case investigators. Major challenges included deficiencies in transportation and communication resources, low morale and fatigue among case investigators, mismanagement of data, mistrust among communities, and leadership challenges. Without addressing these operational challenges, technical surveillance solutions are difficult to implement and hold limited relevance, due to the poor quality and quantity of data being collected. The low prioritization of operational needs came at a high cost. To mediate this, GOAL addressed these operational challenges by acquiring critical transportation and communication resources to facilitate case investigation, including vehicles, boats, fuel, drivers, phones, and closed user groups; addressing fatigue and low morale by hiring more case investigators, making timely payments, arranging for time off, and providing meals and personal protective equipment; improving data tracking efforts through standard operating procedures, training, and mentorship to build higher-quality case histories and make it easier to access information; strengthening trust in communities by ensuring familiarity and consistency of case investigators; and improving operational leadership challenges through meetings and regular coordination, establishing an active surveillance strategy in Port Loko, and conducting an after-action review. Resolving or addressing these challenges was of primary importance, and requisite for the implementation of technical epidemiological complements to EVD case investigation

    Learning from M/EEG data with variable brain activation delays

    Get PDF
    International audienceMagneto- and electroencephalography (M/EEG) measure the electromagnetic signals produced by brain activity. In order to address the issue of limited signal-to-noise ratio (SNR) with raw data, acquisitions consist of multiple repetitions of the same experiment. An important challenge arising from such data is the variability of brain activations over the repetitions. It hinders statistical analysis such as prediction performance in a supervised learning setup. One such confounding variability is the time offset of the peak of the activation, which varies across repetitions. We propose to address this misalignment issue by explicitly modeling time shifts of different brain responses in a classification setup. To this end, we use the latent support vector machine (LSVM) formulation, where the latent shifts are inferred while learning the classifier parameters. The inferred shifts are further used to improve the SNR of the M/EEG data, and to infer the chronometry and the sequence of activations across the brain regions that are involved in the experimental task. Results are validated on a long term memory retrieval task, showing significant improvement using the proposed latent discriminative method

    Cognitive control in belief-laden reasoning during conclusion processing: An ERP study

    Get PDF
    Belief bias is the tendency to accept conclusions that are compatible with existing beliefs more frequently than those that contradict beliefs. It is one of the most replicated behavioral findings in the reasoning literature. Recently, neuroimaging studies using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have provided a new perspective and have demonstrated neural correlates of belief bias that have been viewed as supportive of dual-process theories of belief bias. However, fMRI studies have tended to focus on conclusion processing, while ERPs studies have been concerned with the processing of premises. In the present research, the electrophysiological correlates of cognitive control were studied among 12 subjects using high-density ERPs. The analysis was focused on the conclusion presentation phase and was limited to normatively sanctioned responses to valid–believable and valid–unbelievable problems. Results showed that when participants gave normatively sanctioned responses to problems where belief and logic conflicted, a more positive ERP deflection was elicited than for normatively sanctioned responses to nonconflict problems. This was observed from −400 to −200 ms prior to the correct response being given. The positive component is argued to be analogous to the late positive component (LPC) involved in cognitive control processes. This is consistent with the inhibition of empirically anomalous information when conclusions are unbelievable. These data are important in elucidating the neural correlates of belief bias by providing evidence for electrophysiological correlates of conflict resolution during conclusion processing. Moreover, they are supportive of dual-process theories of belief bias that propose conflict detection and resolution processes as central to the explanation of belief bias

    The meaning of the virtual Midas touch: An ERP study in economic decision making

    Get PDF
    The Midas touch refers to the altruistic effects of a brief touch. Though these effects have often been replicated, they remain poorly understood. We investigate the psychophysiology of the effect using remotely transmitted, precisely timed, tactile messages in an economic decision-making game called Ultimatum. Participants were more likely to accept offers after receiving a remotely transmitted touch. Furthermore, we found distinct effects of touch on event-related potentials evoked by (a) feedback regarding accepted and rejected offers, (b) decision cues related to proposals, and (c) the haptic and auditory cues themselves. In each case, a late positive effect of touch was observed and related to the P3. Given the role of the P3 in memory-related functions, the results indicate an indirect relationship between touch and generosity that relies on memory. This hypothesis was further tested and confirmed in the positive effects of touch on later proposals

    Usefulness of event-related potentials in the assessment of mild cognitive impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine if changes in latencies and amplitudes of the major waves of Auditory Event-Related Potentials (AERP), correlate with memory status of patients with mild cognitive impairment (MCI) and conversion to Alzheimer's disease (AD).</p> <p>91 patients with MCI (mean ± SD age = 66.6 ± 5.4, MMSE score = 27.7) and 30 age-matched healthy control (AMHC) subjects (mean ± SD age = 68.9 ± 9.9) were studied. 54 patients were re-examined after an average period of 14(± 5.2) months. During this time period 5 patients converted to AD. Between-group differences in latency and amplitude of the major AERP waves (N200, P300 and Slow Wave) were determined. Within each group, correlation coefficients (CC) between these characteristics of the different AERP waves were calculated. Finally, for patients, CCs were determined among each AERP wave and their age and MMSE scores. Confirmatory factor analysis (CFA) was used to examine the underlying structure of waveforms both in the control and the patient groups.</p> <p>Results</p> <p>Latencies of all major AERP components were prolonged in patients compared to controls. Patients presented with significantly higher N200 amplitudes, but no significant differences were observed in P300 amplitudes. Significant differences between follow-up and baseline measurements were found for P300 latency (p = 0.009), N200 amplitude (p < 0.001) and P300 amplitude (p = 0.05). MMSE scores of patients did not correlate with latency or amplitude of the AERP components. Moreover, the establishment of a N200 latency cut-off value of 287 ms resulted in a sensitivity of 100% and a specificity of 91% in the prediction of MCI patients that converted to AD.</p> <p>Conclusion</p> <p>Although we were not able to establish significant correlations between latencies and amplitudes of N200, P300 and SW and the patients' performance in MMSE, which is a psychometric test for classifying patients suffering from MCI, our results point out that the disorganization of the AERP waveform in MCI patients is a potential basis upon which a neurophysiologic methodology for identifying and "staging" MCI can be sought. We also found that delayed N200 latency not only identifies memory changes better than the MMSE, but also may be a potential predictor of the MCI patients who convert to AD.</p

    Using Goal- and Grip-Related Information for Understanding the Correctness of Other’s Actions: An ERP Study

    Get PDF
    Detecting errors in other’s actions is of pivotal importance for joint action, competitive behavior and observational learning. Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is known about error-detection in everyday situations. The present study aimed to identify the functional and neural mechanisms whereby we understand the correctness of other’s actions involving well-known objects (e.g. pouring coffee in a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an incorrect hand-object interaction. These findings provide new insight in the functional significance of the neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy. Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of objects and grips

    Effects of etizolam and ethyl loflazepate on the P300 event-related potential in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Benzodiazepines carry the risk of inducing cognitive impairments, which may go unnoticed while profoundly disturbing social activity. Furthermore, these impairments are partly associated with the elimination half-life (EH) of the substance from the body. The object of the present study was to examine the effects of etizolam and ethyl loflazepate, with EHs of 6 h and 122 h, respectively, on information processing in healthy subjects.</p> <p>Methods</p> <p>Healthy people were administered etizolam and ethyl loflazepate acutely and subchronically (14 days). The auditory P300 event-related potential and the neuropsychological batteries described below were employed to assess the effects of drugs on cognition. The P300 event-related potential was recorded before and after drug treatments. The digit symbol test, trail making test, digit span test and verbal paired associates test were administered to examine mental slowing and memory functioning.</p> <p>Results</p> <p>Acute administration of drugs caused prolongation in P300 latency and reduction in P300 amplitude. Etizolam caused a statistically significant prolongation in P300 latency compared to ethyl loflazepate. Furthermore, subchronic administration of etizolam, but not ethyl loflazepate, still caused a weak prolongation in P300 latency. In contrast, neuropsychological tests showed no difference.</p> <p>Conclusions</p> <p>The results indicate that acute administration of ethyl loflazepate induces less effect on P300 latency than etizolam.</p

    Direction and magnitude of nicotine effects on the fMRI BOLD response are related to nicotine effects on behavioral performance

    Get PDF
    Considerable variability across individuals has been reported in both the behavioral and fMRI blood oxygen level-dependent (BOLD) response to nicotine. We aimed to investigate (1) whether there is a heterogeneous effect of nicotine on behavioral and BOLD responses across participants and (2) if heterogeneous BOLD responses are associated with behavioral performance measures. In this double-blind, placebo-controlled, cross-over study, 41 healthy participants (19 smokers)—drawn from a larger population-based sample—performed a visual oddball task after acute challenge with 1 mg nasal nicotine. fMRI data and reaction time were recorded during performance of the task. Across the entire group of subjects, we found increased activation in the anterior cingulate cortex, middle frontal gyrus, superior temporal gyrus, post-central gyrus, planum temporal and frontal pole in the nicotine condition compared with the placebo condition. However, follow-up analyses of this difference in activation between the placebo and nicotine conditions revealed that some participants showed an increase in activation while others showed a decrease in BOLD activation from the placebo to the nicotine condition. A reduction of BOLD activation from placebo to nicotine was associated with a decrease in reaction time and reaction time variability and vice versa, suggesting that it is the direction of BOLD response to nicotine which is related to task performance. We conclude that the BOLD response to nicotine is heterogeneous and that the direction of response to nicotine should be taken into account in future pharmaco-fMRI research on the central action of nicotine
    corecore