4 research outputs found

    A multimodal staged approach for the resection of a Sylvian aqueduct rosette-forming glioneuronal tumor: A case report and literature review

    Get PDF
    Abstract Background and importance The rosette-forming glioneuronal tumor (RGNT) is a rare central nervous system tumor which often arises intraventricularly. We report the first surgical case of an RGNT arising from the Sylvian aqueduct treated through a double approach. Clinical presentation A 25-year-old female presented with triventricular hydrocephalus on MRI secondary to a 2 cm Sylvian aqueduct mass. Emergent endoscopic third ventriculostomy with biopsy confirmed the diagnosis of RGNT. She was first followed up and due to the rapid tumor's growth a double surgical approach was proposed. The first was a telo-velar approach to the lower third of the aqueduct. The second stage was an endoscopic ultrasound aspirator aided transfrontal transforaminal approach; last postoperative MRI shows a 6 mm residual tumor. Patient leads an active working and social life. Conclusion Choosing a two stages approach for this rare and complex Sylvian aqueduct RGNT resulted in a positive clinical and radiological outcome

    Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of I-f and I-CaL in patient-derived cardiomyocytes

    Get PDF
    Aims: Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). Methods and results: Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. Conclusions: Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF

    Thymic epithelial cell alterations and defective thymopoiesis lead to central and peripheral tolerance perturbation in MHCII deficiency

    No full text
    Major Histocompatibility Complex (MHC) class II (MHCII) deficiency (MHCII-D), also known as Bare Lymphocyte Syndrome (BLS), is a rare combined immunodeficiency due to mutations in genes regulating expression of MHCII molecules. MHCII deficiency results in impaired cellular and humoral immune responses, leading to severe infections and autoimmunity. Abnormal cross-talk with developing T cells due to the absence of MHCII expression likely leads to defects in thymic epithelial cells (TEC). However, the contribution of TEC alterations to the pathogenesis of this primary immunodeficiency has not been well characterized to date, in particular in regard to immune dysregulation. To this aim, we have performed an in-depth cellular and molecular characterization of TEC in this disease. We observed an overall perturbation of thymic structure and function in both MHCII-/- mice and patients. Transcriptomic and proteomic profiling of murine TEC revealed several alterations. In particular, we demonstrated that impairment of lymphostromal cross-talk in the thymus of MHCII-/- mice affects mTEC maturation and promiscuous gene expression and causes defects of central tolerance. Furthermore, we observed peripheral tolerance impairment, likely due to defective Treg cell generation and/or function and B cell tolerance breakdown. Overall, our findings reveal disease-specific TEC defects resulting in perturbation of central tolerance and limiting the potential benefits of hematopoietic stem cell transplantation in MHCII deficiency
    corecore