47 research outputs found

    Native defects in monolayer GaS and GaSe: Electrical properties and thermodynamic stability

    Get PDF
    Structural, electronic, and thermodynamic properties of native defects in GaS and GaSe monolayers are investigated by means of accurate ab initio calculations. Based on their charge transition levels we assess the influence of the studied defects on the electrical properties of the monolayers. Specifically, we show that native defects do not behave as shallow dopants and their presence cannot account for the experimentally observed intrinsic doping. In addition, we predict that native defects are efficient compensation and recombination centers. Besides pointing out their detrimental nature, we also calculate the corresponding finite-temperature formation energies and provide a window of growth conditions able to reduce the concentration of all relevant native defects

    Surface reactivity and cation non-stoichiometry in BaZr<sub>1−x</sub>Y<sub>x</sub>O<sub>3−δ</sub> (x = 0–0.2) exposed to CO<sub>2</sub> at elevated temperature

    Get PDF
    The reactivity of BaZr1−xYxO3−δ (x = 0–0.2) ceramics under 1 atm CO2 at 650 °C for up to 1000 h was investigated in order to elucidate possible degradation processes occurring when the material is applied as a proton-conducting electrolyte in electrochemical devices. The annealed ceramics were characterized by a range of techniques (SEM, TEM, GIXRD, XPS and SIMS) with respect to changes in the phase composition and microstructure. Formation of BaCO3 was observed on the surfaces of the annealed samples and the amount increased with time and was higher for the Y-doped compositions. The subsurface regions were found to be deficient in Ba and, in the case of the Y-doped compositions, enriched in Y in two distinct chemical states as identified by XPS. First-principles calculations showed that they were Y residing on the Zr and Ba-sites, respectively, and that local enrichment of Y both in bulk and on the surface attained a structure similar to Y2O3. Overall, it was substantiated that the reaction with CO2 mainly proceeded according to a defect chemical reaction involving transfer of Y to the Ba-site and consumption of BaZrO3 formula units. It was suggested that a similar degradation mechanism may occur in the case of Ba(OH)2 formation under high steam pressure conditions

    The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

    Get PDF
    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.We thank members of the Cambridge BioResource Scientific Advisory Board and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is funded from the BLUEPRINT Grant Code HEALTH-F5-2011-282510 and the BHF Cambridge Centre of Excellence [RE/13/6/30180]. J.R.S. is funded by a MRC CASE Industrial studentship, co-funded by Pfizer. J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator. S.M., S.T, M.H, K.M. and L.D. are supported by the NIHR BioResource-Rare Diseases, which is funded by NIHR. Research in the Ouwehand laboratory is supported by program grants from the NIHR to W.H.O., the European Commission (HEALTH-F2-2012-279233), the British Heart Foundation (BHF) to W.J.A. and D.R. under numbers RP-PG-0310-1002 and RG/09/12/28096 and Bristol Myers-Squibb; the laboratory also receives funding from NHSBT. W.H.O is a NIHR Senior Investigator. The INTERVAL academic coordinating centre receives core support from the UK Medical Research Council (G0800270), the BHF (SP/09/002), the NIHR and Cambridge Biomedical Research Centre, as well as grants from the European Research Council (268834), the European Commission Framework Programme 7 (HEALTH-F2-2012-279233), Merck and Pfizer. DJR and DA were supported by the NIHR Programme ‘Erythropoiesis in Health and Disease’ (Ref. NIHR-RP-PG-0310-1004). N.S. is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). The INTERVAL study is funded by NHSBT and has been supported by the NIHR-BTRU in Donor Health and Genomics at the University of Cambridge in partnership with NHSBT. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health of England or NHSBT. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship

    Robust nanocomposites of a-Fe2O3 and N-doped graphene oxide: Interfacial bonding and chemisorption of H2O

    Get PDF
    Nanocomposites of α-Fe2O3 (hematite) and (N-doped) graphene oxide (GO) were investigated using first-principles calculations with focus on structure, chemical bonding, electronic structure and H2O adsorption. The nanocomposites were modeled as the interface between the α-Fe2O3 (0 0 0 1) surface and the basal plane of reduced graphene oxide, comprising epoxy groups (C:O ratio of 8) as well as graphitic and pyridinic nitrogen doping. The composite structures exhibited strong chemical bonding by the formation of a bridging Fe–O–C bond. The calculated binding energy between the materials was −0.56 eV per Fe–O–C bond for GO and up to −1.14 eV for N-doped GO, and the binding energies were found to correlate with the charge of the bridging oxide ion. The composites exhibited partly occupied carbon states close to or above the α-Fe2O3 valence band maximum. Dissociative adsorption of H2O was found to be more exothermic for the composites compared to the individual materials, ranging from about −0.9 to −1.7 eV for the most stable configurations with hydroxide species adsorbed to GO and protons forming NH groups or adsorbed to the α-Fe2O3 surface.publishedVersio

    Influence of Ce3+ polarons on grain boundary space-charge in proton conducting Y-doped BaCeO3

    Get PDF
    Defect segregation and space-charge formation were investigated for a (0 2 1)[1 0 0] symmetric tilt grain boundary in Y-doped BaCeO3. Density functional theory calculations according to the PBE+U formalism were used to calculate segregation energies for protons, oxygen vacancies and Y-acceptor dopants from the bulk to the grain boundary core. Defect concentration and potential profiles across the grain boundary were obtained from thermodynamic space-charge models. Oxygen vacancies were found to exhibit a particularly exothermic segregation energy of up to −1.66 eV while protons exhibited segregation energies in the range of −0.47 eV to −0.93 eV. The grain boundary was determined to be predominated by protons below 800 K in 3% H2O and the corresponding space-charge potential was 0.4–0.7 V under the Mott–Schottky approximation. The role of electronic defects in the space-charge properties was evaluated, and it was substantiated that electron conduction along the grain boundary could become evident under reducing conditions.publishedVersio

    Proton segregation and space-charge at the BaZrO3 (0 0 1)/MgO (0 0 1) heterointerface

    Get PDF
    Y-doped BaZrO3 (BZY) can be deposited epitaxially on MgO (0 0 1) and the considered interface serves as a model system for studying heterointerface properties of protonic conductors. In this study, the defect chemistry of the interface between ZrO2-terminated BaZrO3 (0 0 1) and MgO (0 0 1) was investigated by first-principles calculations and space-charge theory. Segregation energies from the BZY bulk to the interface ZrO2 and MgO layers were calculated for effectively charged protons, oxygen vacancies, Y-acceptors as well as cation vacancies. Protons were found to exhibit a strong tendency for segregating to the interface, particularly to an oxide ion in the MgO layer, rendering a net positive charge of the interface. According to the applied thermodynamic space-charge models, the interface potential could reach more than 1 V under the Mott-Schottky approximation, with depletion regions extending up to 2 nm into BZY. With fully equilibrated Y-segregation profiles, the interface potential was significantly diminished to about 0.2 V at 573 K and 0.025 bar H2O. While the interface was found to be close to saturated by protons under most condition, it was concluded that proton conduction along the interface could not contribute significantly to the in-plane conductivity of BZY films deposited on MgO substrate.acceptedVersio

    Adsorption of CO2 and Facile Carbonate Formation on BaZrO3 Surfaces

    Get PDF
    The adsorption of CO2 and CO on BaZrO3 (0 0 1) was investigated by first-principles calculations with a focus on the BaO termination. CO2 was found to strongly chemisorb on the surface by formation of carbonate species with an adsorption enthalpy of up to −2.25 eV at low coverage and −1.05 eV for a full monolayer. An adsorption entropy of −8.8 × 10–4 eV K–1 was obtained from the vibrational properties of the adsorbates. Surface coverages were evaluated as a function of temperature and CO2 partial pressure, and the obtained coverage under 1 bar CO2 was more than 0.8 at 1000 K (conditions relevant for steam methane reforming). The fully saturated surface was stable up to about 400 K under ambient atmosphere, i.e., 400 ppm of CO2. The initial stage of BaCO3 formation was evaluated according to migration of barium to the carbonate overlayer, which was found to result in a significant stabilization of the system. The barium migration was found to be essentially unobstructed with a barrier of only ∼5 meV. In light of the stability of carbonate adsorbates at the surface, the prospect of bulk dissolution of carbonate species was evaluated but ultimately found to be negligible in acceptor-doped BaZrO3.acceptedVersio

    Robust nanocomposites of a-Fe2O3 and N-doped graphene oxide: Interfacial bonding and chemisorption of H2O

    Get PDF
    Nanocomposites of α-Fe2O3 (hematite) and (N-doped) graphene oxide (GO) were investigated using first-principles calculations with focus on structure, chemical bonding, electronic structure and H2O adsorption. The nanocomposites were modeled as the interface between the α-Fe2O3 (0 0 0 1) surface and the basal plane of reduced graphene oxide, comprising epoxy groups (C:O ratio of 8) as well as graphitic and pyridinic nitrogen doping. The composite structures exhibited strong chemical bonding by the formation of a bridging Fe–O–C bond. The calculated binding energy between the materials was −0.56 eV per Fe–O–C bond for GO and up to −1.14 eV for N-doped GO, and the binding energies were found to correlate with the charge of the bridging oxide ion. The composites exhibited partly occupied carbon states close to or above the α-Fe2O3 valence band maximum. Dissociative adsorption of H2O was found to be more exothermic for the composites compared to the individual materials, ranging from about −0.9 to −1.7 eV for the most stable configurations with hydroxide species adsorbed to GO and protons forming NH groups or adsorbed to the α-Fe2O3 surface

    Thermochemically stable ceramic compositemembranes based on Bi2O3 for oxygen separationwith high permeability

    Get PDF
    Ceramic oxygen separation membranes can be utilized to reduce CO2 emissions in fossil fuel power generation cycles based on oxy-fuel combustion. State-of-the-art oxygen permeable membranes based on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) offer high oxygen permeability but suffer from long-term instability, especially in the presence of CO2. In this work, we present a novel ceramic composite membrane consisting of 60 vol% (Bi0.8Tm0.2)2O3−δ (BTM) and 40 vol% (La0.8Sr0.2)0.99MnO3−δ (LSM), which shows not only comparable oxygen permeability to that of BSCF but also outstanding long-term stability. At 900 °C, oxygen fluxes of 1.01 mL min−1 cm−2 and 1.33 mL min−1 cm−2 were obtained for membranes with thicknesses of 1.35 mm and 0.75 mm, respectively. Moreover, significant oxygen fluxes were obtained at temperatures down to 600 °C. A stable operation of the membrane was demonstrated with insignificant changes in the oxygen flux at 750 °C for approx. one month and at 700 °C with 50% CO2 as the sweep gas for more than two weeks.publishedVersio
    corecore