15 research outputs found

    Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination

    Get PDF
    BACKGROUND: Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. SUMMARY: As a group of clinical olfactory researchers, we propose the standardization of the terms "dysosmia," "anosmia," "hyposmia," "normosmia," "hyperosmia," "olfactory intolerance," "parosmia," and "phantosmia" (or "olfactory hallucination") in olfaction-related communication, with specific definitions in this text. KEY MESSAGES: The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field

    Olfactory nomenclature: An orchestrated effort to clarify terms and definitions of dysosmia, anosmia, hyposmia, normosmia, hyperosmia, olfactory intolerance, parosmia, and phantosmia/olfactory hallucination

    Get PDF
    Background: Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. Summary: As a group of clinical olfactory researchers, we propose the standardization of the terms “dysosmia,” “anosmia,” “hyposmia,” “normosmia,” “hyperosmia,” “olfactory intolerance,” “parosmia,” and “phantosmia” (or “olfactory hallucination”) in olfaction-related communication, with specific definitions in this text. Key Messages: The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field

    Clinical Olfactory Working Group Consensus statement on the treatment of post infectious olfactory dysfunction

    Get PDF
    Background: Respiratory tract viruses are the second most common cause of olfactory dysfunction. As we learn more about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the recognition that olfactory dysfunction is a key symptom of this disease process, there is a greater need than ever for evidence-based management of postinfectious olfactory dysfunction (PIOD). Objective: Our aim was to provide an evidence-based practical guide to the management of PIOD (including post–coronavirus 2019 cases) for both primary care practitioners and hospital specialists. Methods: A systematic review of the treatment options available for the management of PIOD was performed. The written systematic review was then circulated among the members of the Clinical Olfactory Working Group for their perusal before roundtable expert discussion of the treatment options. The group also undertook a survey to determine their current clinical practice with regard to treatment of PIOD. Results: The search resulted in 467 citations, of which 107 articles were fully reviewed and analyzed for eligibility; 40 citations fulfilled the inclusion criteria, 11 of which were randomized controlled trials. In total, 15 of the articles specifically looked at PIOD whereas the other 25 included other etiologies for olfactory dysfunction. Conclusions: The Clinical Olfactory Working Group members made an overwhelming recommendation for olfactory training; none recommended monocycline antibiotics. The diagnostic role of oral steroids was discussed; some group members were in favor of vitamin A drops. Further research is needed to confirm the place of other therapeutic options

    Systemic corticosteroids in coronavirus disease 2019 (COVID‐19)‐related smell dysfunction: an international view

    Get PDF
    The frequent association between coronavirus disease 2019 (COVID‐19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID‐19–related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID‐19–related olfactory dysfunction is high; and (3) corticosteroids have well‐known potential adverse effects. We encourage randomized placebo‐controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects

    DenseNet and Support Vector Machine classifications of major depressive disorder using vertex-wise cortical features

    Full text link
    Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing an extensive sample of people with MDD (N=2,772) and HC (N=4,240), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures

    Get PDF
    Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects

    Electro-olfactogram Responses Before and After Aversive Olfactory Conditioning in Humans

    No full text
    The aim of the present study was to investigate whether repetitive aversive odor conditioning induced changes at the level of the peripheral olfactory system in humans. A total of 51 volunteers participated. A pair of indistinguishable odor enantiomers [(+)-rose oxide and (-)-rose oxide] were used as stimuli. During the pre-conditioning, participants' ability to discriminate between the two odors was assessed using a three-alternative, forced-choice discrimination test. In addition, electro-olfactograms ( EOG) from the olfactory epithelium were recorded. Participants underwent three conditioning sessions on consecutive days. The experimental group received an electrical stimulus to the forearm only following (+)-rose oxide presentation, whereas its enantiomer sibling was never paired with the aversive stimulus; the control group did not receive any electrical stimulation. During the post-conditioning session, their ability to discriminate the two enantiomers was assessed again using the discrimination test and EOG recordings were obtained similarly to the pre-conditioning session. Results showed significant differences in the peripheral electrophysiological responses between the conditioned and the unconditioned stimulus, demonstrating contextually induced changes at the level of the first neuron in the olfactory system. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved

    Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses

    Get PDF
    The ability of humans to discriminate enantiomeric odour pairs is substance –specific. Current literature suggests that psychophysical discrimination of odour enantiomers mainly depends on the peripheral processing at the level of the olfactory sensory neurons (OSN). To study the influence of central processing in discrimination, we investigated differences in the electrophysiological responses to psychophysically indistinguishable (+)- and (−)- rose oxide enantiomers at peripheral and central-nervous levels in humans. We recorded the electro-olfactogram (EOG) from the olfactory epithelium and the EEG-derived olfactory event-related potentials (OERP). Results from a psychophysical three alternative forced choice test indicated indistinguishability of the two odour enantiomers. In a total of 19 young participants EOG could be recorded in 74 and OERP in 95% of subjects. Significantly different EOG amplitudes and latencies were recorded in response to the 2 stimuli. However, no such differences in amplitude or latency emerged for the OERP. In conclusion, although the pair of enantiomer could be discriminated at a peripheral level this did not lead to a central-nervous/cognitive differentiation of the two stimuli
    corecore