15 research outputs found
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC 2023)
International audienceThe Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of autonomous radio-detection units to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to discover them in spite of their plausibly tiny flux. Presently, three prototype GRAND radio arrays are in operation: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nancay, in France. Their goals are to field-test the design of the radio-detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 38th International Cosmic Ray Conference (ICRC 2023) presents an overview of GRAND, in its present and future incarnations, and a look at the first data collected by GRANDProto13, the first phase of GRANDProto300
Proceedings of GAMA days 2022
Building on last year’s success, the GAMA Days 2022 is the 2nd edition of the conference, where users and developers of the GAMA modeling and simulation platform will have an opportunity to meet, present their work, expose their difficulties, propose enhancements and, more generally, exchange and collaborate on exciting topics related to GAMA
Proceedings of GAMA days 2022
International audienceBuilding on last year’s success, the GAMA Days 2022 is the 2nd edition of the conference, where users and developers of the GAMA modeling and simulation platform will have an opportunity to meet, present their work, expose their difficulties, propose enhancements and, more generally, exchange and collaborate on exciting topics related to GAMA
Proceedings of GAMA days 2022
Building on last year’s success, the GAMA Days 2022 is the 2nd edition of the conference, where users and developers of the GAMA modeling and simulation platform will have an opportunity to meet, present their work, expose their difficulties, propose enhancements and, more generally, exchange and collaborate on exciting topics related to GAMA
Proceedings of GAMA days 2022
Building on last year’s success, the GAMA Days 2022 is the 2nd edition of the conference, where users and developers of the GAMA modeling and simulation platform will have an opportunity to meet, present their work, expose their difficulties, propose enhancements and, more generally, exchange and collaborate on exciting topics related to GAMA