1,039 research outputs found

    Poincaré on the Foundation of Geometry in the Understanding

    Get PDF
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, PoincarĂ©, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study of groups of operations. In place of the established view I offer a revised view, according to which PoincarĂ© held that axioms in geometry are in fact assertions about invariants of groups. Groups, as forms of the understanding, are prior in conception to the objects of geometry and afford the proper definition of those objects, according to PoincarĂ©. Poincaré’s view therefore contrasts sharply with Kant’s foundation of geometry in a unique form of sensibility. According to my interpretation, axioms are not definitions in disguise because they themselves implicitly define their terms, but rather because they disguise the definitions which imply them

    Dynamics of Black Hole Pairs I: Periodic Tables

    Full text link
    Although the orbits of comparable mass, spinning black holes seem to defy simple decoding, we find a means to decipher all such orbits. The dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. We are able to quantitatively define and describe the fully three dimensional motion of comparable mass binaries with one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by capturing the motion in the orbital plane. Our results are twofold: (1) We derive highly simplified equations of motion in a non-orthogonal orbital basis, and (2) we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rationals, we are able to show that zoom-whirl behavior is prevalent in comparable mass binaries in the strong-field regime. A first significant conclusion that can be drawn from this analysis is that all generic orbits in the final stages of inspiral under gravitational radiation losses are characterized by precessing clovers with few leaves and that no orbit will behave like the tightly precessing ellipse of Mercury. The gravitational waveform produced by these low-leaf clovers will reflect the natural harmonics of the orbital basis -- harmonics that, importantly, depend only on radius. The significance for gravitational wave astronomy will depend on the number of windings the pair executes in the strong-field regime and could be more conspicuous for intermediate mass pairs than for stellar mass pairs.Comment: 19 pages, lots of figure

    Classical small systems coupled to finite baths

    Full text link
    We have studied the properties of a classical NSN_S-body system coupled to a bath containing NBN_B-body harmonic oscillators, employing an (NS+NB)(N_S+N_B) model which is different from most of the existing models with NS=1N_S=1. We have performed simulations for NSN_S-oscillator systems, solving 2(NS+NB)2(N_S+N_B) first-order differential equations with NS≃1−10N_S \simeq 1 - 10 and NB≃10−1000N_B \simeq 10 - 1000, in order to calculate the time-dependent energy exchange between the system and the bath. The calculated energy in the system rapidly changes while its envelope has a much slower time dependence. Detailed calculations of the stationary energy distribution of the system fS(u)f_S(u) (uu: an energy per particle in the system) have shown that its properties are mainly determined by NSN_S but weakly depend on NBN_B. The calculated fS(u)f_S(u) is analyzed with the use of the Γ\Gamma and qq-Γ\Gamma distributions: the latter is derived with the superstatistical approach (SSA) and microcanonical approach (MCA) to the nonextensive statistics, where qq stands for the entropic index. Based on analyses of our simulation results, a critical comparison is made between the SSA and MCA. Simulations have been performed also for the NSN_S-body ideal-gas system. The effect of the coupling between oscillators in the bath has been examined by additional (NS+NBN_S+N_B) models which include baths consisting of coupled linear chains with periodic and fixed-end boundary conditions.Comment: 30 pages, 16 figures; the final version accepted in Phys. Rev.

    Libration driven elliptical instability

    Full text link
    The elliptical instability is a generic instability which takes place in any rotating flow whose streamlines are elliptically deformed. Up to now, it has been widely studied in the case of a constant, non-zero differential rotation between the fluid and the elliptical distortion with applications in turbulence, aeronautics, planetology and astrophysics. In this letter, we extend previous analytical studies and report the first numerical and experimental evidence that elliptical instability can also be driven by libration, i.e. periodic oscillations of the differential rotation between the fluid and the elliptical distortion, with a zero mean value. Our results suggest that intermittent, space-filling turbulence due to this instability can exist in the liquid cores and sub-surface oceans of so-called synchronized planets and moons

    Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system

    Get PDF
    Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we prove in detail that also for collinear Lagrangian points the quantum corrections are of the same order of magnitude in the Earth-Moon system. Third, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points, both stable and unstable. The present paper investigates therefore, eventually, a restricted three-body problem involving Earth, Moon and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist

    Homoclinic Orbits around Spinning Black Holes I: Exact Solution for the Kerr Separatrix

    Full text link
    Under the dissipative effects of gravitational radiation, black hole binaries will transition from an inspiral to a plunge. The separatrix between bound and plunging orbits features prominently in the transition. For equatorial Kerr orbits, we show that the separatrix is a homoclinic orbit in one-to-one correspondence with an energetically-bound, unstable circular orbit. After providing a definition of homoclinic orbits, we exploit their correspondence with circular orbits and derive exact solutions for them. This paper focuses on homoclinic behavior in physical space, while in a companion paper we paint the complementary phase space portrait. The exact results for the Kerr separatrix could be useful for analytic or numerical studies of the transition from inspiral to plunge.Comment: 21 pages, some figure

    Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices

    Full text link
    We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between self-gravitating systems and two-dimensional point vortices and derive a Virial-like relation for the vortex system

    Integral equations PS-3 and moduli of pants

    Full text link
    More than a hundred years ago H.Poincare and V.A.Steklov considered a problem for the Laplace equation with spectral parameter in the boundary conditions. Today similar problems for two adjacent domains with the spectral parameter in the conditions on the common boundary of the domains arises in a variety of situations: in justification and optimization of domain decomposition method, simple 2D models of oil extraction, (thermo)conductivity of composite materials. Singular 1D integral Poincare-Steklov equation with spectral parameter naturally emerges after reducing this 2D problem to the common boundary of the domains. We present a constructive representation for the eigenvalues and eigenfunctions of this integral equation in terms of moduli of explicitly constructed pants, one of the simplest Riemann surfaces with boundary. Essentially the solution of integral equation is reduced to the solution of three transcendent equations with three unknown numbers, moduli of pants. The discreet spectrum of the equation is related to certain surgery procedure ('grafting') invented by B.Maskit (1969), D.Hejhal (1975) and D.Sullivan- W.Thurston (1983).Comment: 27 pages, 13 figure

    The free rigid body dynamics: generalized versus classic

    Full text link
    In this paper we analyze the normal forms of a general quadratic Hamiltonian system defined on the dual of the Lie algebra o(K)\mathfrak{o}(K) of real KK - skew - symmetric matrices, where KK is an arbitrary 3×33\times 3 real symmetric matrix. A consequence of the main results is that any first-order autonomous three-dimensional differential equation possessing two independent quadratic constants of motion which admits a positive/negative definite linear combination, is affinely equivalent to the classical "relaxed" free rigid body dynamics with linear controls.Comment: 12 page

    Persistent Chaos in High Dimensions

    Full text link
    An extensive statistical survey of universal approximators shows that as the dimension of a typical dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically and the number of parameter windows with periodic behavior decreases. A subset of parameter space remains in which topological change induced by small parameter variation is very common. It turns out, however, that if the system's dimension is sufficiently high, this inevitable, and expected, topological change is never catastrophic, in the sense chaotic behavior is preserved. One concludes that deterministic chaos is persistent in high dimensions.Comment: 4 pages, 3 figures; Changes in response to referee comment
    • 

    corecore