24 research outputs found

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor – Part 3: Performance at 20°C and 35°C

    Get PDF
    The performance of 2 biological sulphate reduction (BSR) upflow anaerobic sludge bed (UASB) reactors fed primary sewage sludge (PSS) and sulphate, one at 20oC (R2) and one at 35oC (R1) is described. To maintain the effluent sulphate concentration below 250 mgSO42-/., the hydraulic retention time (HRT) and bed solids retention time (SRT or sludge age) both needed to be longer and the feed primary sewage sludge (PSS) COD to SO4 2- ratio higher at 20oC than at 35oC, viz. 20.4 to 21.0 h, 24 d and 1.75 gCOD/gSO4 2- at 20oC and 16.4 to 17.0 h, 21 d and 1.75 gCOD/gSO4 2- at 35oC respectively. The longer HRT, SRT and higher feed PSS COD/ SO4 2- ratio is a consequence of a slower PSS hydrolysis/acidogenesis rate at 20oCresulting in a lower biodegradable particulate organics conversion to volatile fatty acids (VFA). Solid liquid separation in both systems was good yielding average particulate and soluble organic COD concentrations of (150 and 100 mgCOD/. for R1; 138 and 96 mgCOD/. for R2). The sulphate reduction was >90% in both systems. The UASB reactor R1 (at 35oC) was also operated at an increased influent sulphate concentration (1 800 mgSO4 2-/.) to investigate the inhibition effect by un-dissociated hydrogen sulphide generated from the reduction of this high sulphate concentration. It was found that a highsulphate reduction (~ 92%) was maintained even at the relatively low HRT of 18.5 h. The COD and S mass balances above 95% were achieved over both systems indicating that the performance data obtained from them is reliable for developing and calibrating mathematical models

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor – Part 5: Steady-state model

    Get PDF
    This paper describes the development of a steady-state anaerobic digestion model for biological sulphate reduction using primary sewage sludge (PSS) as substrate. The model comprises: a chemical oxygen demand (COD) based hydrolysis kinetics part in which the PSS biodegradable COD and sulphate removals are calculated for given hydraulic and sludge retention times; a C, H, O, N, P, S, COD and charge mass balance stoichiometry part in which the alkalinity generated (from both the HCO3- and HS-) is determined from the COD and sulphate removals; and an inorganic carbon (CO2) and sulphide mixed weak acid/base chemistry part in which the digester pH is calculated from the HCO3- and HS- species formed. From the stoichiometry, it was found that the PSS is carbon limited in that it does not generate sufficient HCO3- alkalinity for the sulphate reduction, i.e., its COD/C ratio is too high which accounts for the observed zero gas (CO2) generation. The H2S/HS- system provides the alkalinity shortfall and establishes the system pH. Once developed and calibrated, the model results were compared with experimental data from 2 laboratory-scale upflow anaerobic sludge bed reactors (operated at 35oC and 20°C respectively) fed PSS and sulphate. The predicted COD and sulphate removals, alkalinity and digester pH correspond very well to the measured data. The model assists in identifying design and operation parameters sensitive to the system and provides a basis for developing an integrated biological, chemical and physical process dynamic model. Keywords: biological sulphate reduction, primary sewage sludge, upflow anaerobic sludge bed reactor, steady state model, kinetics, stoichiometry, mixed weak acid/base chemistr

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor – Part 6: Development of a kinetic model for BSR

    Get PDF
    A 2-phase (aqueous-gas) kinetic model for biological sulphate reduction (BSR) using primary sewage sludge (PSS) as carbon source is presented. The methanogenic anaerobic digestion (AD) model of Sötemann et al. (2005) is extended by adding the biological, chemical and physical processes associated with BSR, i.e. propionic acid degrading sulphate-reducing bacteria (SRB), acetoclastic SRB and hydrogenotrophic SRB, the aqueous weak acid/base chemistry processes of the sulphate and sulphide systems and an aqueous-gas sulphide exchange process. The model is validated with experimental data from 2 upflow anaerobic sludge bed (UASB) reactors fed various PSS COD/SO42- ratios under constant flow and load conditions at 35°C and 20°C. The kinetic model results, including the reactor pH (within 0.1 pH unit) compare well with the experimental results and with those calculated from a steady-state BSR model. The kinetic model confirms that: (1) at ambient temperature (20°C), the hydrolysis rate is significantly reduced compared with that at 35°C, which requires a longer sludge age (larger bed volume) in the UASB reactor; (2) the hydrolysis rate of the PSS biodegradable particulate organics (BPO) is the same under methanogenic and sulphidogenic conditions; (3) the PSS BPO are carbon deficient for BSR in that more electrons are donated than carbon supplied for the required alkalinity increase, with the result that the sulphide system supplies the alkalinity deficit; and (4) due to (3) there is zero CO2 gas generation and in effect the sulphide system establishes the reactor pH. This observation allows the carbon content of the utilised organics to be determined from the H2CO3* alkalinity increase in the reactor, which can be simply measured by titration methods. Keywords: biological sulphate reduction, primary sewage sludge, upflow anaerobic sludge bed reactor, dynamic model, kinetics, stoichiometry, mixed weak acid/base chemistr

    Evaluating the potential impact of proton carriers on syntrophic propionate oxidation

    Get PDF
    Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl-, at 1X, 10X, and 30X native conductivity (1.5 mS.cm(-1)). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions

    Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design

    Full text link
    [EN] Solanum torvum is a highly vigorous relative of eggplant that is resistant to a number of harmful soil-borne diseases and is compatible for grafting with eggplant. Being a potential rootstock, this plant frequently presents poor and erratic germination, which makes its practical use difficult. We used an L8 (2(7)) orthogonal array design to evaluate the primary effects of seven factors (soaking of seeds, scarification with sodium hypochlorite (NaClO), application of gibberellic acid (GA(3)), use of potassium mitrate (KNO3) as a moistening agent, cold stratification, application of a heatshock, and light irradiation during germination) at two levels (L0 and L1) using four germination parameters (early and final germination, germination rate and vigour index) in fresh S. torvum seeds. S. torvum seeds had a strong dormancy with no germination in the untreated seeds and high early and final germination (approximately 100%) in certain treatments. An evaluation of the main effects revealed highly positive effects on germination from seed soaking, and the use of GA(3), KNO3, and light irradiation, whereas NaClO scarification had a negative effect. The application of cold stratification and heat shock treatments also had a positive effect on seed germination but to a lesser extent than the other treatments. An improved proposed protocol that consisted of subjecting seeds to soaking, the application of GA(3) and KNO3, cold stratification, heat shock, and light irradiation was validated and demonstrated to be highly effective, with seed germination success greater than 60% being observed at 3 days and final germination reaching a plateau at 6 days. A second validation experiment using a commercial growing substrate also showed a high emergence (approximately 50%) at 7 days and a final germination of approximately 80% was recorded with application of the improved protocol. The seed germination protocol that we have developed will facilitate the use of S. torvum as a rootstock for eggplant and its use in breeding programmes. Our results also reveal that orthogonal array designs are a powerful tool for establishing improved protocols for seed germination. (C) 2015 Elsevier B.V. All rights reserved.This work was completed as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and is implemented in partnership with national and international gene banks and plant breeding institutes. For further information see the project website: http://www.cwrdiversity.org/. Isabel Andujar and Pietro Gramazio are grateful to Universitat Politecnica de Valencia for their post-doctoral (PAID-10-14) and pre-doctoral (Programa FPI de la UPV-Subprograma 1) contracts, respectively.Ranil, RH.; Niran, HML.; Plazas Ávila, MDLO.; Fonseka, R.; Hemal Fonseka, H.; Vilanova Navarro, S.; Andújar Pérez, I.... (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae. 193:174-181. https://doi.org/10.1016/j.scienta.2015.07.030S17418119

    Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography

    Get PDF
    The coffee berry borer (Hypothenemus hampei) is the most economically important insect pest of coffee globally. Micro-computed tomography (micro-CT) was used to reconstruct the respiratory system of this species for the first time; this is the smallest insect (ca. 2 mm long) for which this has been done to date. Anatomical details of the spiracles and tracheal tubes are described, images presented, and new terms introduced. The total volume and the relationship between tracheal lumen diameter, length and volume are also presented. The total length of the tracheal tubes are seventy times the length of the entire animal. Videos and a 3D model for use with mobile devices are included as supplementary information; these could be useful for future research and for teaching insect anatomy to students and the public in general.This paper benefitted from the sub-award agreement S15192.01 between Kansas State University (KSU) and the University of Granada, as part of a USDANIFA Award 2014-70016-23028 to S.J. Brown (KSU), “Developing an Infrastructure and Product Test Pipeline to Deliver Novel Therapies for Citrus Greening Disease” (2015–2020)

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor – Part 2: Modification of simple wet chemistry analytical procedures to achieve COD and S mass balances

    Get PDF
    The use of the conventional COD method to measure sulphide proved to be problematic due to the loss of hydrogen sulphide (H2S) during sample handling. For calibration of models based on mass balances, and operation of full-scale systems, it was imperative to develop simple wet chemistry analytical procedures for the accurate measurement of parameters like sulphide, COD, alkalinities and VFA in order to monitor BSR systems and achieve 100% COD and S mass balances. Three different analytical methods were investigated to minimise the loss of un-dissociated H2S. Method 1, which is the recommended Standard Methods COD test method, resulted in poor S mass balance (64-75%) due to loss of H2S during sample handling, mainly vacuum filtration. Method 2, in which 3 drops of 10 M NaOH are added immediately upon effluent sample collection to raise the pH to > 10 and converting un-dissociated H2S species into the HS- species resulted in minimal sulphide loss during sample vacuum filtration, dilution, mixing and standing. Method 3, in which a polyelectrolyte is added to the effluentsample to coagulate the organic particles with centrifugation for solid-liquid separation instead of vacuum filtration. Results from Method 3 showed an improvement in the S mass balance with respect to Method 1 - 91% against 75% without a long sample standing period and 88% against 65% with a long sample standing period. However, S mass balance with Method 3 was still relatively low when compared with Method 2 (86 to 91% against 92 to 95%). Therefore, Method 2 was the best simple wet chemistry analytical procedure to accurately measure St (= H2S + HS-) and achieve close to 100% COD and S mass balances. The effects of St loss were also investigated on the total and subsystem alkalinities as determined with the 5-pH point titration method. By testing standard solutions with known carbonate, acetate and sulphide species and upflow anaerobic sludge bed (UASB) reactor effluent samples, it was found that the total alkalinity concentration is not affected by H2S (and CO2) loss as the subsystem alkalinities re-speciate due to a change in pH; and to obtain accurate H2CO3* alk and volatile fatty acid (VFA) concentrations, accurate sulphide concentrations are required, i.e. those obtained from Method 2

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor – Part 4: Bed settling characteristics

    Get PDF
    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated because this appeared to be a retention timedefining feature of the system. Consequently, the settling rate of the various solids fractions in the sludge was measured in a settleometer to determine if bed expansion or sludge settleability was the capacity-limiting process. It was found thatboth sludges settled well and at an upflow velocity of up to 1.16 m/h 99% of the total sludge mass was retained. This upflow velocity was 9.1 and 13.7 times higher than the maximum operating upflow velocity of UASB reactors R1 (0.127 m/h) and R2 (0.085 m/h) respectively that caused system failure. Tests were also done to demonstrate the effect of upflow velocity (Vup) on the sludge bed expansion. Relative to the settled sludge volume at zero upflow, the R1 sludge expanded 1.8 timesat a Vup of 0.127 m/h while R2 sludge expanded 2.0 times at a Vup 0.085 m/h. From the tests, R1 (35oC) sludge had a bettersettleability and expanded less compared to R2 (20oC) sludge for the same applied upflow velocity. Because in operating R1 and R2, the bed volume was kept constant, the mass of sludge removed from the system correspondingly increased as upflow increased and the bed expanded, causing a reduced sludge age and sludge bed mass to mediate the bioprocesses. It was concluded that the system failure was caused by bed expansion rather than by the sludge settleabilit

    Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor – Part 1: Feasibility study

    Get PDF
    This paper describes a novel system for the biological sulphate reduction (BSR) of acid mine drainage (AMD) using primary sewage sludge (PSS) as carbon source in an upflow anaerobic sludge bed (UASB) reactor configuration. A UASB reactor was operated at a temperature of 35oC and it received PSS (1 875 mgCOD/.) augmented with sulphate (1 500 mgSO4 2-/.). The experimental results indicate that high treatment efficiency was achieved at more than 90% sulphate reduction at a liquid hydraulic retention time (HRT) of 13.5 h. In this study, the effects of various operational parameters were also investigated. The effect of a biomass recycle stream from the top to the bottom of the sludge bed was found to initiate rapid BSR from the bottom of the bed. Profile tests showed that effective and immediate sulphate reduction was achieved as soon as theinfluent entered the reactor. From these results, it can be concluded that the UASB configuration using PSS as energy source would be a viable method for the BSR of AMD

    Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina

    No full text
    The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barked cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 +/- 1 nm and internal: with a thickness of 169 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (mu = 14 +/- 4 MPa) than the external layer (mu = 2.8 +/- 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 +/- 22kPa, the interface strength is 78 +/- 12 kPa and the polymer network extensibility is 2.8 +/- 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth. (C) 2014 Elsevier B.V. All rights reserved
    corecore