8,653 research outputs found

    Modeling the Impact of Climate Change on Runoff and Annual Water Balance of an Arctic Headwater Basin

    Get PDF
    Climate change will be an important issue facing Arctic areas in the coming decades since climate models are projecting warmer and wetter conditions for many northern regions. From a hydrological perspective, critical issues include a shortened snow cover season, changes in winter snow cover properties, and changes in the timing and volume of snowmelt runoff. To assess the impacts of projected temperature and precipitation changes on the hydrology of a small Arctic headwater basin, the distributed hydrological model WATFLOOD was used in conjunction with selected Global Circulation Models (GCMs) and future climate scenarios. It was found that the hydrological model simulated basin runoff adequately either with input climate data collected in the study area or with input data from a long-term climate station located approximately 50 km south. WATFLOOD was then used to predict future runoff using GCM outputs for the 2040–69 and 2070–99 time periods. The results gave dates of first and peak runoff that were, on average, up to 25 days earlier than in current (1961–90) climate. In addition, future runoff and evaporation volumes increased by up to 48% as a result of projected increases in temperature and precipitation. Furthermore, a large number of simulated years showed midwinter melt periods, which will have major impacts on snowpack properties and, in turn, on human, animal, and plant life in this region.Au cours des décennies à venir, puisque les modèles climatiques projettent des conditions plus chaudes et plus humides pour de nombreuses régions nordiques, les régions arctiques feront face à l’important enjeu du changement climatique. Du point de vue hydrologique, les enjeux critiques se traduisent par une saison de couverture de neige plus courte, par des changements du point de vue des propriétés de la couverture de neige hivernale ainsi que par des changements par rapport au moment et au volume d’écoulement de la fonte des neiges. Nous avons utilisé le modèle hydrologique distribué WATFLOOD, certains modèles de circulation globale et des scénarios climatiques futurs pour évaluer les incidences des changements projetés en matière de températures et de précipitations sur l’hydrologie d’un petit bassin d’amont de l’Arctique. Le modèle hydrologique a permis de simuler, de manière adéquate, l’écoulement du bassin soit grâce à l’introduction des données climatiques recueillies dans la région visée par l’étude, soit grâce aux données à long terme provenant d’une station climatique située à une cinquantaine de kilomètres au sud. Ensuite, WATFLOOD a permis de prédire l’écoulement futur en recourant au débit des modèles de circulation globale pour les périodes allant de 2040 à 2069 et de 2070 à 2099. D’après les résultats obtenus, les dates du premier écoulement et de l’écoulement de pointe seraient devancées de jusqu’à 25 jours par rapport au climat actuel (période de 1961 à 1990). De plus, les volumes d’écoulement et d’évaporation futurs connaissaient une augmentation atteignant jusqu’à 48 % en raison des élévations prévues de températures et de précipitations. De plus, un grand nombre d’années simulées a permis de constater des périodes de fonte en plein milieu de l’hiver, ce qui aura une grande incidence sur les propriétés de la couverture de neige et, par conséquent, sur les êtres humains, les animaux et la vie végétale dans cette région

    Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet

    Get PDF
    Scattered light images of transition discs in the near-infrared often show non-axisymmetric structures in the form of wide-open spiral arms in addition to their characteristic low-opacity inner gap region. We study self-gravitating discs and investigate the influence of gravitational instability on the shape and contrast of spiral arms induced by planet-disc interactions. Two-dimensional non-isothermal hydrodynamical simulations including viscous heating and a cooling prescription are combined with three-dimensional dust continuum radiative transfer models for direct comparison to observations. We find that the resulting contrast between the spirals and the surrounding disc in scattered light is by far higher for pressure scale height variations, i.e. thermal perturbations, than for pure surface density variations. Self-gravity effects suppress any vortex modes and tend to reduce the opening angle of planet-induced spirals, making them more tightly wound. If the disc is only marginally gravitationally stable with a Toomre parameter around unity, an embedded massive planet (planet-to-star mass ratio of 10−210^{-2}) can trigger gravitational instability in the outer disc. The spirals created by this instability and the density waves launched by the planet can overlap resulting in large-scale, more open spiral arms in the outer disc. The contrast of these spirals is well above the detection limit of current telescopes.Comment: Accepted for publication in MNRAS; 13 pages, 8 figure

    Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence

    Get PDF
    We show that Rydberg states in an ultra-cold gas can be excited with strongly preferred nearest-neighbor distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002]. Near to the end of the echo sequence, almost any remaining Rydberg atom is separated from its next-neighbor Rydberg atom by a distance slightly larger than the instantaneous blockade radius half-way through the pulse. These correlations lead to large deviations of the atom counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of samples with small numbers of atoms. We finally demonstrate the utility of the omega-expansion for the approximate description of correlation dynamics through an echo sequence.Comment: 8 pages, 6 figure

    Observability of Forming Planets and their Circumplanetary Disks I. -- Parameter Study for ALMA

    Full text link
    We present mock observations of forming planets with ALMA. The possible detections of circumplanetary disks (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 AU from their star. The radiative, three dimensional hydrodynamic simulations were then post-processed with RADMC3D and the ALMA Observation Simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit, therefore the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as Band 9 (440 microns). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup\mathrm{M_{Jup}} gas-giant, due to temperature weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disk leading to a less efficient cooling there. A test was made for a 52 AU orbital separation, showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>>5hrs). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; second, the beam convolution makes the gap shallower and at least 25% narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.Comment: Accepted for publication at MNRAS. Typos are corrected since previous version. 11 pages, 5 tables, 4 figure

    Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas

    Get PDF
    We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elastic-collision regime at low initial Gamma_e, which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma_e in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas

    Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma

    Get PDF
    We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profle, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.Comment: 4 pages, 4 figure

    Revisit of non-linear Landau damping for electrostatic instability driven by blazar-induced pair beams

    Full text link
    We revisit the effect of non-linear Landau (NL) damping on the electrostatic instability of blazar-induced pair beams, using a realistic pair-beam distribution. We employ a simplified 2D model in k{\bf k}-space to study the evolution of the electric-field spectrum and to calculate the relaxation time of the beam. We demonstrate that the 2D model is an adequate representation of the 3D physics. We find that non-linear Landau damping, once it operates efficiently, transports essentially the entire wave energy to small wavenumbers where wave driving is weak or absent. The relaxation time also strongly depends on the IGM temperature, TIGMT_\mathrm{IGM}, and for TIGM≪10T_\mathrm{IGM}\ll10 eV, and in the absence of any other damping mechanism, the relaxation time of the pair beam is longer than the inverse Compton (IC) scattering time. The weak late-time beam energy losses arise from the accumulation of wave energy at small kk, that non-linearly drains the wave energy at the resonant k\mathbf{k} of the pair-beam instability. Any other dissipation process operating at small kk would reduce that wave-energy drain and hence lead to stronger pair-beam energy losses. As an example, collisions reduce the relaxation time by an order of magnitude, although their rate is very small. Other non-linear processes, such as the modulation instability, could provide additional damping of the non-resonant waves and dramatically reduce the relaxation time of the pair beam. An accurate description of the spectral evolution of the electrostatic waves is crucial for calculating the relaxation time of the pair beam

    Relativistic models for quasi-elastic neutrino scattering

    Full text link
    We present quasi-elastic neutrino-nucleus cross sections in the energy range from 150 MeV up to 5 GeV for the target nuclei 12C and 56Fe. A relativistic description of the nuclear dynamics and the neutrino-nucleus coupling is adopted. For the treatment of final-state interactions (FSI) we rely on two frameworks succesfully applied to exclusive electron-nucleus scattering: a relativistic optical potential and a relativistic multiple-scattering Glauber approximation. At lower energies, the optical-potential approach is considered to be the optimum choice, whereas at high energies a Glauber approach is more natural. Comparing the results of both calculations, it is found that the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies of 200 MeV. We argue that the nuclear transparencies extracted from A(e,e'p) measurements can be used to obtain realistic estimates of the effect of FSI mechanisms on quasi-elastic neutrino-nucleus cross sections. We present two independent relativistic plane-wave impulse approximation (RPWIA) calculations of quasi-elastic neutrino-nucleus cross sections. They agree at the percent level, showing the reliability of the numerical techniques adopted and providing benchmark RPWIA results.Comment: revised version,28 pages, 7 figures, accepted in Phys.Rev.

    Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas

    Full text link
    Absorption imaging and spectroscopy can probe the dynamics of an ultracold neutral plasma during the first few microseconds after its creation. Quantitative analysis of the data, however, is complicated by the inhomogeneous density distribution, expansion of the plasma, and possible lack of global thermal equilibrium for the ions. In this article we describe methods for addressing these issues. Using simple assumptions about the underlying temperature distribution and ion motion, the Doppler-broadened absorption spectrum obtained from plasma images can be related to the average temperature in the plasma.Comment: 14 pages, 8 figure
    • …
    corecore