69 research outputs found

    Scenopinus jerei, a new species of window fly (Diptera, Scenopinidae) from Finland

    Get PDF
    A new species of window fly (Diptera: Scenopinidae), Scenopinus jerei sp. nov., with characteristic bicoloured legs and completely black halteres, is described from Finland. To exclude potential previously named species, a survey of the relevant type specimens as well as original descriptions of the Palearctic and Nearctic Scenopinus species has been conducted, including old Scenopinus fenestralis (Linnaeus) synonyms. Scenopinus jerei sp. nov. is likely to be an overlooked, boreal forest specialist living in the nests of cavitynesting birds. An identification key to the European species is provided

    DNA Barcodes for the Northern European Tachinid Flies (Diptera: Tachinidae)

    Get PDF
    This data release provides COI barcodes for 366 species of parasitic flies (Diptera: Tachinidae), enabling the DNA based identification of the majority of northern European species and a large proportion of Palearctic genera, regardless of the developmental stage. The data will provide a tool for taxonomists and ecologists studying this ecologically important but challenging parasitoid family. A comparison of minimum distances between the nearest neighbors revealed the mean divergence of 5.52% that is approximately the same as observed earlier with comparable sampling in Lepidoptera, but clearly less than in Coleoptera. Full barcode-sharing was observed between 13 species pairs or triplets, equaling to 7.36% of all species. Delimitation based on Barcode Index Number (BIN) system was compared with traditional classification of species and interesting cases of possible species oversplits and cryptic diversity are discussed. Overall, DNA barcodes are effective in separating tachinid species and provide novel insight into the taxonomy of several genera.This data release provides COI barcodes for 366 species of parasitic flies (Diptera: Tachinidae), enabling the DNA based identification of the majority of northern European species and a large proportion of Palearctic genera, regardless of the developmental stage. The data will provide a tool for taxonomists and ecologists studying this ecologically important but challenging parasitoid family. A comparison of minimum distances between the nearest neighbors revealed the mean divergence of 5.52% that is approximately the same as observed earlier with comparable sampling in Lepidoptera, but clearly less than in Coleoptera. Full barcode-sharing was observed between 13 species pairs or triplets, equaling to 7.36% of all species. Delimitation based on Barcode Index Number (BIN) system was compared with traditional classification of species and interesting cases of possible species oversplits and cryptic diversity are discussed. Overall, DNA barcodes are effective in separating tachinid species and provide novel insight into the taxonomy of several genera.Peer reviewe

    Promiscuous specialists : Host specificity patterns among generalist louse flies

    Get PDF
    Ectoparasites such as louse flies (Diptera: Hippoboscidae) have tendency for host specialization, which is driven by adaptation to host biology as well as competition avoidance between parasites of the same host. However, some louse fly species, especially in genera attacking birds, show wide range of suitable hosts. In the presented study, we have surveyed the current status of bird specific louse flies in Finland to provide comprehensive host association data to analyse the ecological requirements of the generalist species. A thorough sampling of 9342 birds, representing 134 species, recovered 576 specimens of louse flies, belonging to six species: Crataerina hirundinis, C. pallida, Ornithomya avicularia, O. chloropus, O. fringillina and Ornithophila metallica. Despite some overlapping hosts, the three Ornithomya species showed a notable pattern in their host preference, which was influenced not only by the host size but also by the habitat and host breeding strategy. We also provide DNA barcodes for ten Finnish species of Hippoboscidae, which can be used as a resource for species identification as well as metabarcoding studies in the future.Peer reviewe

    TFAM knockdown-triggered mtDNA-nucleoid aggregation and a decrease in mtDNA copy number induce the reorganization of nucleoid populations and mitochondria-associated ER-membrane contacts

    Get PDF
    The correct organization of mitochondrial DNA (mtDNA) in nucleoids and the contacts of mitochondria with the ER play an important role in maintaining the mitochondrial genome distribution within the cell. Mitochondria-associated ER membranes (MAMs) consist of interacting proteins and lipids located in the outer mitochondrial membrane and ER membrane, forming a platform for the mitochondrial inner membrane-associated genome replication factory as well as connecting the nucleoids with the mitochondrial division machinery. We show here that knockdown of a core component of mitochondrial nucleoids, TFAM, causes changes in the mitochondrial nucleoid populations, which subsequently impact ER-mitochondria membrane contacts. Knockdown of TFAM causes a significant decrease in the copy number of mtDNA as well as aggregation of mtDNA nucleoids. At the same time, it causes significant upregulation of the replicative TWNK helicase in the membrane-associated nucleoid fraction. This is accompanied by a transient elevation of MAM proteins, indicating a rearrangement of the linkage between ER and mitochondria triggered by changes in mitochondrial nucleoids. Reciprocal knockdown of the mitochondrial replicative helicase TWNK causes a decrease in mtDNA copy number and modifies mtDNA membrane association, however, it does not cause nucleoid aggregation and considerable alterations of MAM proteins in the membrane-associated fraction. Our explanation is that the aggregation of mitochondrial nucleoids resulting from TFAM knockdown triggers a compensatory mechanism involving the reorganization of both mitochondrial nucleoids and MAM. These results could provide an important insight into pathological conditions associated with impaired nucleoid organization or defects of mtDNA distribution.publishedVersionPeer reviewe

    Checklist of the superfamilies Oestroidea and Hippoboscoidea of Finland (Insecta, Diptera)

    Get PDF
    An updated checklist of the superfamilies Oestroidea and Hippoboscoidea recorded from Finland is presented. The checklist covers the following families: Calliphoridae, Rhiniidae, Sarcophagidae, Rhinophoridae, Tachinidae, Oestridae and Hippoboscidae.Peer reviewe

    Spatial adjustment of bioenergetics, a possible determinant of contractile adaptation and development of contractile failure

    Get PDF
    Cardiomyocytes depend on mitochondrial oxidative phosphorylation (OXPHOS) for energy metabolism, which is facilitated by the mitochondrial electron transfer system (ETS). In a series of thermogenic redox reactions, electrons are shuttled through the ETS to oxygen as the final electron acceptor. This electron transfer is coupled to proton translocation across the inner mitochondrial membrane, which itself is the main driving force for ATP production. Oxygen availability is thus a prerequisite for ATP production and consequently contractility. Notably, cardiomyocytes are exceptionally large cells and densely packed with contractile structures, which constrains intracellular oxygen distribution. Moreover, oxygen must pass through layers of actively respiring mitochondria to reach the ones located in the innermost contractile compartment. Indeed, uneven oxygen distribution was observed in cardiomyocytes, suggesting that local ATP supply may also vary according to oxygen availability. Here, we discuss how spatial adjustment of bioenergetics to intracellular oxygen fluctuations may underlie cardiac contractile adaptation and how this adaptation may pose a risk for the development of contractile failure

    Replication fork rescue in mammalian mitochondria

    Get PDF
    Replication stalling has been associated with the formation of pathological mitochondrial DNA (mtDNA) rearrangements. Yet, almost nothing is known about the fate of stalled replication intermediates in mitochondria. We show here that replication stalling in mitochondria leads to replication fork regression and mtDNA double-strand breaks. The resulting mtDNA fragments are normally degraded by a mechanism involving the mitochondrial exonuclease MGME1, and the loss of this enzyme results in accumulation of linear and recombining mtDNA species. Additionally, replication stress promotes the initiation of alternative replication origins as an apparent means of rescue by fork convergence. Besides demonstrating an interplay between two major mechanisms rescuing stalled replication forks - mtDNA degradation and homology-dependent repair - our data provide evidence that mitochondria employ similar mechanisms to cope with replication stress as known from other genetic systems.Peer reviewe

    The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA.

    Get PDF
    The mammalian mitochondrial transcription termination factor mTERF binds with high affinity to a site within the tRNA(Leu(UUR)) gene and regulates the amount of read through transcription from the ribosomal DNA into the remaining genes of the major coding strand of mitochondrial DNA (mtDNA). Electrophoretic mobility shift assays (EMSA) and SELEX, using mitochondrial protein extracts from cells induced to overexpress mTERF, revealed novel, weaker mTERF-binding sites, clustered in several regions of mtDNA, notably in the major non-coding region (NCR). Such binding in vivo was supported by mtDNA immunoprecipitation. Two-dimensional neutral agarose gel electrophoresis (2DNAGE) and 5' end mapping by ligation-mediated PCR (LM-PCR) identified the region of the canonical mTERF-binding site as a replication pause site. The strength of pausing was modulated by the expression level of mTERF. mTERF overexpression also affected replication pausing in other regions of the genome in which mTERF binding was found. These results indicate a role for TERF in mtDNA replication, in addition to its role in transcription. We suggest that mTERF could provide a system for coordinating the passage of replication and transcription complexes, analogous with replication pause-region binding proteins in other systems, whose main role is to safeguard the integrity of the genome whilst facilitating its efficient expression
    • …
    corecore