84 research outputs found

    Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail

    Get PDF
    Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19?h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies

    Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate

    Get PDF
    The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry

    Small-Molecule Inhibitors of Dengue-Virus Entry

    Get PDF
    Flavivirus envelope protein (E) mediates membrane fusion and viral entry from endosomes. A low-pH induced, dimer-to-trimer rearrangement and reconfiguration of the membrane-proximal “stem" of the E ectodomain draw together the viral and cellular membranes. We found stem-derived peptides from dengue virus (DV) bind stem-less E trimer and mimic the stem-reconfiguration step in the fusion pathway. We adapted this experiment as a high-throughput screen for small molecules that block peptide binding and thus may inhibit viral entry. A compound identified in this screen, 1662G07, and a number of its analogs reversibly inhibit DV infectivity. They do so by binding the prefusion, dimeric E on the virion surface, before adsorption to a cell. They also block viral fusion with liposomes. Structure-activity relationship studies have led to analogs with submicromolar IC90s against DV2, and certain analogs are active against DV serotypes 1,2, and 4. The compounds do not inhibit the closely related Kunjin virus. We propose that they bind in a previously identified, E-protein pocket, exposed on the virion surface and although this pocket is closed in the postfusion trimer, its mouth is fully accessible. Examination of the E-trimer coordinates (PDB 1OK8) shows that conformational fluctuations around the hinge could open the pocket without dissociating the trimer or otherwise generating molecular collisions. We propose that compounds such as 1662G07 trap the sE trimer in a “pocket-open" state, which has lost affinity for the stem peptide and cannot support the final “zipping up" of the stem

    Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: a retrospective study of 27 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viral respiratory tract infections (RTI) are relatively understudied in Southeast Asian tropical countries. In temperate countries, seasonal activity of respiratory viruses has been reported, particularly in association with temperature, while inconsistent correlation of respiratory viral activity with humidity and rain is found in tropical countries. A retrospective study was performed from 1982-2008 to investigate the viral etiology of children (≤ 5 years old) admitted with RTI in a tertiary hospital in Kuala Lumpur, Malaysia.</p> <p>Methods</p> <p>A total of 10269 respiratory samples from all children ≤ 5 years old received at the hospital's diagnostic virology laboratory between 1982-2008 were included in the study. Immunofluorescence staining (for respiratory syncytial virus (RSV), influenza A and B, parainfluenza types 1-3, and adenovirus) and virus isolation were performed. The yearly hospitalization rates and annual patterns of laboratory-confirmed viral RTIs were determined. Univariate ANOVA was used to analyse the demographic parameters of cases. Multiple regression and Spearman's rank correlation were used to analyse the correlation between RSV cases and meteorological parameters.</p> <p>Results</p> <p>A total of 2708 cases were laboratory-confirmed using immunofluorescence assays and viral cultures, with the most commonly detected being RSV (1913, 70.6%), parainfluenza viruses (357, 13.2%), influenza viruses (297, 11.0%), and adenovirus (141, 5.2%). Children infected with RSV were significantly younger, and children infected with influenza viruses were significantly older. The four main viruses caused disease throughout the year, with a seasonal peak observed for RSV in September-December. Monthly RSV cases were directly correlated with rain days, and inversely correlated with relative humidity and temperature.</p> <p>Conclusion</p> <p>Viral RTIs, particularly due to RSV, are commonly detected in respiratory samples from hospitalized children in Kuala Lumpur, Malaysia. As in temperate countries, RSV infection in tropical Malaysia also caused seasonal yearly epidemics, and this has implications for prophylaxis and vaccination programmes.</p

    Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids

    Get PDF
    Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design

    Lovastatin delays infection and increases survival rates in AG129 mice infected with dengue virus serotype 2

    Get PDF
    ABSTARCT: It has been reported that treatment of DENV-infected cultures with Lovastatin (LOV), can affect viral assembly. The objective of this study was to evaluate the effect of LOV on the survival rate and viremia levels of DENV-2-infected AG129 mice. Methodology/Principal Findings: Mice were inoculated with 16106 plaque-forming units (PFU/ml) of DENV-2 and treated with LOV (200 mg/kg/day). Pre-treatment with one or three doses of LOV increased the survival rate compared to untreated mice (7.3 and 7.1 days, respectively, compared to 4.8 days). Viremia levels also decreased by 21.8% compared to untreated mice, but only in the group administered three doses prior to inoculation. When LOV was administered after viral inoculation, the survival rate increased (7.3 days in the group treated at 24 hpi, 6.8 days in the group treated at 48 hpi and 6.5 days in the group treated with two doses) compared to the untreated group (4.8 days). Interestingly, the serum viral titer increased by 24.6% in mice treated at 48 hpi with a single dose of LOV and by 21.7% in mice treated with two doses (at 24 and 48 hpi) of LOV compared to untreated mice. Finally histopathological changes in the liver and spleen in infected and untreated mice included massive extramedullary erythropoiesis foci and inflammatory filtration, and these characteristics were decreased or absent in LOV-treated mice. Conclusions/Significance: Our results suggest that the effect of LOV on viremia depends on the timing of treatment and on the number of doses administered. We observed a significant increase in the survival rate in both schemes due to a delay in the progression of the disease. However, the results obtained in the post-treatment scheme must be handled carefully because this treatment scheme increases viremia and we do not know how this increase could affect disease progression in humans

    Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh

    Get PDF
    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh
    corecore