37 research outputs found

    Stimulus-Evoked Activity Modulation of In Vitro Engineered Cortical and Hippocampal Networks

    Get PDF
    The delivery of electrical stimuli is crucial to shape the electrophysiological activity of neuronal populations and to appreciate the response of the different brain circuits involved. In the present work, we used dissociated cortical and hippocampal networks coupled to Micro-Electrode Arrays (MEAs) to investigate the features of their evoked response when a low-frequency (0.2 Hz) electrical stimulation protocol is delivered. In particular, cortical and hippocampal neurons were topologically organized to recreate interconnected sub-populations with a polydimethylsiloxane (PDMS) mask, which guaranteed the segregation of the cell bodies and the connections among the sub-regions through microchannels. We found that cortical assemblies were more reactive than hippocampal ones. Despite both configurations exhibiting a fast (<35 ms) response, this did not uniformly distribute over the MEA in the hippocampal networks. Moreover, the propagation of the stimuli-evoked activity within the networks showed a late (35-500 ms) response only in the cortical assemblies. The achieved results suggest the importance of the neuronal target when electrical stimulation experiments are performed. Not all neuronal types display the same response, and in light of transferring stimulation protocols to in vivo applications, it becomes fundamental to design realistic in vitro brain-on-a-chip devices to investigate the dynamical properties of complex neuronal circuits

    Modularity and neuronal heterogeneity: Two properties that influence in vitro neuropharmacological experiments

    Get PDF
    IntroductionThe goal of this work is to prove the relevance of the experimental model (in vitro neuronal networks in this study) when drug-delivery testing is performed. MethodsWe used dissociated cortical and hippocampal neurons coupled to Micro-Electrode Arrays (MEAs) arranged in different configurations characterized by modularity (i.e., the presence of interconnected sub-networks) and heterogeneity (i.e., the co-existence of neurons coming from brain districts). We delivered increasing concentrations of bicuculline (BIC), a neuromodulator acting on the GABAergic system, and we extracted the IC50 values (i.e., the effective concentration yielding a reduction in the response by 50%) of the mean firing rate for each configuration. ResultsWe found significant lower values of the IC50 computed for modular cortical-hippocampal ensembles than isolated cortical or hippocampal ones. DiscussionAlthough tested with a specific neuromodulator, this work aims at proving the relevance of ad hoc experimental models to perform neuropharmacological experiments to avoid errors of overestimation/underestimation leading to biased information in the characterization of the effects of a drug on neuronal networks

    Modularity and neuronal heterogeneity: Two properties that influence in vitro neuropharmacological experiments

    Get PDF
    IntroductionThe goal of this work is to prove the relevance of the experimental model (in vitro neuronal networks in this study) when drug-delivery testing is performed.MethodsWe used dissociated cortical and hippocampal neurons coupled to Micro-Electrode Arrays (MEAs) arranged in different configurations characterized by modularity (i.e., the presence of interconnected sub-networks) and heterogeneity (i.e., the co-existence of neurons coming from brain districts). We delivered increasing concentrations of bicuculline (BIC), a neuromodulator acting on the GABAergic system, and we extracted the IC50 values (i.e., the effective concentration yielding a reduction in the response by 50%) of the mean firing rate for each configuration.ResultsWe found significant lower values of the IC50 computed for modular cortical-hippocampal ensembles than isolated cortical or hippocampal ones.DiscussionAlthough tested with a specific neuromodulator, this work aims at proving the relevance of ad hoc experimental models to perform neuropharmacological experiments to avoid errors of overestimation/underestimation leading to biased information in the characterization of the effects of a drug on neuronal networks

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Crescere a Trento. Indagine sui servizi socio-educativi per la prima infanzia

    Get PDF
    Nel primo semestre del 2010, il Dipartimento di Sociologia e Ricerca Sociale e il Servizio servizi all’Infanzia, Istruzione e Sport del Comune di Trento - in collaborazione con numerosi altri soggetti – hanno avviato e svolto l’indagine Crescere a Trento, sui servizi socio-educativi per la prima infanzia nel Comune di Trento. La ricerca era orientata a raccogliere dati utili per un’analisi su come le famiglie con bambine e bambini piccoli si organizzano per la loro cura ed educazione, sul bisogno di servizi e interventi per la prima infanzia, sui livelli di soddisfazione per i servizi esistenti, sulle ragioni della non frequenza dei nidi d’infanzia. La rilevazione ha coinvolto un campione probabilistico di famiglie, rappresentativo della popolazione di interesse. Il ricorso a un disegno di ricerca mixed-mode (questionario auto compilato via web, intervista telefonica, intervista faccia-a-faccia) fa di questa indagine anche un interessante esperimento metodologico. Questo quaderno presenta i principali risultati della ricerca e la metodologia adottata per l’indagine

    Lack of Epileptogenic Effects of the Creatine Precursor Guanidinoacetic Acid on Neuronal Cultures In Vitro

    Get PDF
    The creatine precursor Guanidinoacetic Acid (GAA) accumulates in the genetic deficiency of the GuanidinoAcetate Methyl Transferase (GAMT) enzyme and it is believed to cause the seizures that often occur in this condition. However, evidence that it is indeed epileptogenic is scarce and we previously found that it does not cause neuronal hyperexcitation in in vitro brain slices. Here, we used Micro-Electrode Arrays (MEAs) to further investigate the electrophysiological effects of its acute and chronic administration in the networks of cultured neurons, either neocortical or hippocampal. We found that: (1) GAA at the 1 µM concentration, comparable to its concentration in normal cerebrospinal fluid, does not modify any of the parameters we investigated in either neuronal type; (2) at the 10 µM concentration, very similar to that found in the GAMT deficiency, it did not affect any of the parameters we tested except the bursting rate of neocortical networks and the burst duration of hippocampal networks, both of which were decreased, a change pointing in a direction opposite to epileptogenesis; (3) at the very high and unphysiological 100 µM concentration, it caused a decrease in all parameters, a change that again goes in the direction opposite to epileptogenesis. Our results confirm that GAA is not epileptogenic
    corecore