314 research outputs found
Nanoparticle-infused-biodegradable-microneedles as drug-delivery systems: preparation and characterisation
For almost two decades, scientists were exploring the use of nanoparticles as drug vesicles capable of protecting their cargo and deliver it to the target site while evading detection by the body. However, their translation to clinical use has been slower than expected. To a large degree, this is due to the difficulty to formulate the nanomaterial into a usable form, in which they retain their unique, size-dependent properties without aggregating into a bulk material. In this work, we describe a simple methodology for synthesising novel biodegradable microneedle systems infused with silica nanoparticles (SiNP). SiNP were doped with small library of model anti-cancer drugs or drug surrogates before being characterised and encapsulated into biodegradable microneedles. Detailed preparation and characterisation methods for both the nanoparticles and the microneedles-infused with nanoparticles is presented here. We demonstrated the distribution of the nanoparticles within the microneedle matrix in a uniform, un-aggregated form, which enabled the release of the nanoparticles in a sustained manner. Formulating nanomaterial into biodegradable, hydrogel-like microneedles showed to be effective in preserving their colloidal properties, whilst simultaneously enabling the transdermal delivery of the nanomaterial into the body. Although the concepts of nanoparticles and biodegradable microneedles have been researched individually, the combination of the two, to the best of our knowledge, offers a new pathway to nanomedicine-related applications
On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system
In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling. © 2015 The Authors
Recommended from our members
Optical coherence tomography - a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings
Optical Coherence Tomography (OCT) is an imaging technique originally developed for high-resolution 3D imaging of the human eye. In 2004, Targowski et al. and Liang et al. first reported its application to paintings, demonstrating that it was possible to produce cross-section images noninvasively with this technique. In 2005 Liang et al. explored further applications such as imaging of underdrawing at a resolution and contrast greater than that achievable with infrared reflectography Since then the authors have been conducting a project to investigate systematically the potential of O C T as a new tool in the non-invasive examination of paintings and to design an O C T optimised for use in museums. This paper discusses recent developments in this work and presents examples of the use of O CT on paintings undergoing conservation treatment in the National Gallery, London
Nanomedicines and microneedles: a guide to their analysis and application
The fast-advancing progress in the research of nanomedicine and microneedles application in the past two decades have suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. These include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body’s defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven’t answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from lab bench to a viable product difficult.
Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of the nanomaterial with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself but crucially, we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix
Channelled spectrum liquid refractometer
We describe an experimental demonstration of a novel technique for liquid refractometry. A channeled spectrum is produced from an optical beam generated by a diode laser operating below threshold by intercepting half of the beam with a liquid cell. The spectrum is analyzed using a grating and a linear CCD array and provides information on the refractive index of the liquid. The experimental results show that accuracies of better than 0.3% in the index may be obtained with the present method
Application of OCT to examination of easel paintings
We present results of applying low coherence interferometry to gallery paintings. Infrared low coherence interferometry is capable of non-destructive examination of paintings in 3D, which shows not only the structure of the varnish layer but also the paint layers
Recommended from our members
Optical coherence tomography for art conservation and archaeology
Optical coherence tomography (OCT) is a fast scanning Michelson interferometer originally designed for in vivo imaging of the eye. In 2004, our group along with two other groups first reported the application of OCT to art conservation and archaeology. Since that time we have been conducting a project to investigate systematically the potential of OCT as a new tool for non-invasive examinations of a wide range of museum objects and to design an OCT optimised for in situ use in museums. Here we present the latest results from this ongoing project, which include the determination of the optimum spectral windows for OCT imaging of paintings and painted objects executed using traditional techniques, and non-invasive imaging of the subsurface stratigraphy of painted layers at multiple wavelengths. OCT imaging in assisting spectral pigment identification and in measuring refractive indices of paint will also be presented to illustrate the potential of the technique
Transversal and longitudinal images from the retina of the living eye using low coherence interferometry
An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method
Novel software package to facilitate operation of any spectral (Fourier) OCT system
We present a novel software method (master-slave) to facilitate operation of any SDOCT system. This method relaxes constraints on dispersion compensation and k-domain re-sampling in SDOCT methods without requiring any changes in the hardware used
- …