314 research outputs found

    Nanoparticle-infused-biodegradable-microneedles as drug-delivery systems: preparation and characterisation

    Get PDF
    For almost two decades, scientists were exploring the use of nanoparticles as drug vesicles capable of protecting their cargo and deliver it to the target site while evading detection by the body. However, their translation to clinical use has been slower than expected. To a large degree, this is due to the difficulty to formulate the nanomaterial into a usable form, in which they retain their unique, size-dependent properties without aggregating into a bulk material. In this work, we describe a simple methodology for synthesising novel biodegradable microneedle systems infused with silica nanoparticles (SiNP). SiNP were doped with small library of model anti-cancer drugs or drug surrogates before being characterised and encapsulated into biodegradable microneedles. Detailed preparation and characterisation methods for both the nanoparticles and the microneedles-infused with nanoparticles is presented here. We demonstrated the distribution of the nanoparticles within the microneedle matrix in a uniform, un-aggregated form, which enabled the release of the nanoparticles in a sustained manner. Formulating nanomaterial into biodegradable, hydrogel-like microneedles showed to be effective in preserving their colloidal properties, whilst simultaneously enabling the transdermal delivery of the nanomaterial into the body. Although the concepts of nanoparticles and biodegradable microneedles have been researched individually, the combination of the two, to the best of our knowledge, offers a new pathway to nanomedicine-related applications

    On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system

    Get PDF
    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling. © 2015 The Authors

    Nanomedicines and microneedles: a guide to their analysis and application

    Get PDF
    The fast-advancing progress in the research of nanomedicine and microneedles application in the past two decades have suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. These include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body’s defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven’t answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of the nanomaterial with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself but crucially, we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix

    Channelled spectrum liquid refractometer

    Get PDF
    We describe an experimental demonstration of a novel technique for liquid refractometry. A channeled spectrum is produced from an optical beam generated by a diode laser operating below threshold by intercepting half of the beam with a liquid cell. The spectrum is analyzed using a grating and a linear CCD array and provides information on the refractive index of the liquid. The experimental results show that accuracies of better than 0.3% in the index may be obtained with the present method

    Application of OCT to examination of easel paintings

    Get PDF
    We present results of applying low coherence interferometry to gallery paintings. Infrared low coherence interferometry is capable of non-destructive examination of paintings in 3D, which shows not only the structure of the varnish layer but also the paint layers

    Transversal and longitudinal images from the retina of the living eye using low coherence interferometry

    Get PDF
    An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method

    Novel software package to facilitate operation of any spectral (Fourier) OCT system

    Get PDF
    We present a novel software method (master-slave) to facilitate operation of any SDOCT system. This method relaxes constraints on dispersion compensation and k-domain re-sampling in SDOCT methods without requiring any changes in the hardware used
    • …
    corecore