7 research outputs found
DEVELOPMENT OF METHODS FOR DETERMINING THE CONTOURS OF OBJECTS FOR A COMPLEX STRUCTURED COLOR IMAGE BASED ON THE ANT COLONY OPTIMIZATION ALGORITHM
A method for determining the contours of objects on complexly structured color images based on the ant colony optimization algorithm is proposed. The method for determining the contours of objects of interest in complexly structured color images based on the ant colony optimization algorithm, unlike the known ones, provides for the following. Color channels are highlighted. In each color channel, a brightness channel is allocated. The contours of objects of interest are determined by the method based on the ant colony optimization algorithm. At the end, the transition back to the original color model (the combination of color channels) is carried out.
A typical complex structured color image is processed to determine the contours of objects using the ant colony optimization algorithm. The image is presented in the RGB color space. It is established that objects of interest can be determined on the resulting image. At the same time, the presence of a large number of "garbage" objects on the resulting image is noted. This is a disadvantage of the developed method.
A visual comparison of the application of the developed method and the known methods for determining the contours of objects is carried out. It is established that the developed method improves the accuracy of determining the contours of objects. Errors of the first and second kind are chosen as quantitative indicators of the accuracy of determining the contours of objects in a typical complex structured color image. Errors of the first and second kind are determined by the criterion of maximum likelihood, which follows from the generalized criterion of minimum average risk. The errors of the first and second kind are estimated when determining the contours of objects in a typical complex structured color image using known methods and the developed method. The well-known methods are the Canny, k-means (k=2), k-means (k=3), Random forest methods. It is established that when using the developed method based on the ant colony optimization algorithm, the errors in determining the contours of objects are reduced on average by 5β13 %
DEVELOPMENT OF METHODS FOR DETERMINING THE CONTOURS OF OBJECTS FOR A COMPLEX STRUCTURED COLOR IMAGE BASED ON THE ANT COLONY OPTIMIZATION ALGORITHM
A method for determining the contours of objects on complexly structured color images based on the ant colony optimization algorithm is proposed. The method for determining the contours of objects of interest in complexly structured color images based on the ant colony optimization algorithm, unlike the known ones, provides for the following. Color channels are highlighted. In each color channel, a brightness channel is allocated. The contours of objects of interest are determined by the method based on the ant colony optimization algorithm. At the end, the transition back to the original color model (the combination of color channels) is carried out.A typical complex structured color image is processed to determine the contours of objects using the ant colony optimization algorithm. The image is presented in the RGB color space. It is established that objects of interest can be determined on the resulting image. At the same time, the presence of a large number of "garbage" objects on the resulting image is noted. This is a disadvantage of the developed method.A visual comparison of the application of the developed method and the known methods for determining the contours of objects is carried out. It is established that the developed method improves the accuracy of determining the contours of objects. Errors of the first and second kind are chosen as quantitative indicators of the accuracy of determining the contours of objects in a typical complex structured color image. Errors of the first and second kind are determined by the criterion of maximum likelihood, which follows from the generalized criterion of minimum average risk. The errors of the first and second kind are estimated when determining the contours of objects in a typical complex structured color image using known methods and the developed method. The well-known methods are the Canny, k-means (k=2), k-means (k=3), Random forest methods. It is established that when using the developed method based on the ant colony optimization algorithm, the errors in determining the contours of objects are reduced on average by 5β13Β %
Π‘Π΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ
It was established that it is not possible to apply the known methods of image segmentation directly to segmentation of optical-electronic images of on-board systems of remote sensing of the Earth. We have stated the mathematical problem on segmentation of such images. It was established that the result of segmentation of images of on-board systems of remote sensing of the Earth is separation of an image into artificial objects (objects of interest) and natural objects (a background). It has been proposed to use the artificial bee colony method for segmentation of images. We described the essence of the method, which provides for determination of agents positions, their migration, conditions for stopping of an iteration process by the criterion of a minimum of a fitness function and determination of the optimal value of a threshold level. The fitness function was introduced, which has the physical meaning of a sum of variance brightness of segments of a segmented image. We formulated the optimization problem of image segmentation of an on-board optical-electronic observation system. It consists in minimization of a fitness function under certain assumptions and constraints.The paper presents results from an experimental study on application of the artificial bee colony method to segmentation of an optical-electronic image. Experimental studies on segmentation of an optical-electronic image confirmed the efficiency of the artificial bee colony method. We identified possible objects of interest on the segmented image, such as tanks with oil or fuel for aircraft, airplanes, airfield facilities, etc.The visual assessment of the quality of segmentation was performed. We calculated errors of the first type and the second type. It was established that application of the artificial bee colony method would improve the quality of processing of optical-electronic images. We observed a decrease of segmentation errors of the first type and the second type by the magnitude from 7Β % to 33Β % on averageΠ£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π°ΠΏΡΡΠΌΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½Ρ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°) ΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΡΠΎΠ½). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ·Π»ΠΎΠΆΠ΅Π½Π° ΡΡΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π°Π³Π΅Π½ΡΠΎΠ², ΠΈΡ
ΠΌΠΈΠ³ΡΠ°ΡΠΈΡ, ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈΡΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅Π»Π΅Π²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΡΠΌΠΌΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΡΠΊΠΎΡΡΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΡ
ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΡ
.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Π΅ΠΌΠΊΠΎΡΡΠΈ Ρ Π½Π΅ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠΎΠ², ΡΠ°ΠΌΠΎΠ»Π΅ΡΡ, Π°ΡΡΠΎΠ΄ΡΠΎΠΌΠ½ΡΠ΅ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π° ΡΠ½ΠΈΠΆΠ΅Π½Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ 7 % Π΄ΠΎ 33 %Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π°ΠΏΡΡΠΌΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½Ρ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°) ΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΡΠΎΠ½). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ·Π»ΠΎΠΆΠ΅Π½Π° ΡΡΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π°Π³Π΅Π½ΡΠΎΠ², ΠΈΡ
ΠΌΠΈΠ³ΡΠ°ΡΠΈΡ, ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈΡΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅Π»Π΅Π²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΡΠΌΠΌΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΡΠΊΠΎΡΡΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΡ
ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΡ
.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Π΅ΠΌΠΊΠΎΡΡΠΈ Ρ Π½Π΅ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠΎΠ², ΡΠ°ΠΌΠΎΠ»Π΅ΡΡ, Π°ΡΡΠΎΠ΄ΡΠΎΠΌΠ½ΡΠ΅ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π° ΡΠ½ΠΈΠΆΠ΅Π½Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ 7% Π΄ΠΎ 33%ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΠ΄ΠΎΠΌΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π½Π΅ ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π½Π°ΠΏΡΡΠΌΡ Π·Π°ΡΡΠΎΡΠΎΠ²Π°Π½Ρ Π΄ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ. Π‘ΡΠΎΡΠΌΡΠ»ΡΠΎΠ²Π°Π½ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Π° Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΡΠ°ΠΊΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ Ρ ΡΠΎΠ·Π΄ΡΠ»Π΅Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π½Π° ΡΡΡΡΠ½Ρ ΠΎΠ±βΡΠΊΡΠΈ (ΠΎΠ±βΡΠΊΡΠΈ ΡΠ½ΡΠ΅ΡΠ΅ΡΡ) ΡΠ° ΠΏΡΠΈΡΠΎΠ΄Π½Ρ ΠΎΠ±βΡΠΊΡΠΈ (ΡΠΎΠ½). ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ. ΠΠΈΠΊΠ»Π°Π΄Π΅Π½Π° ΡΡΡΠ½ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ, ΡΠΊΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄Π±Π°ΡΠ°Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ Π°Π³Π΅Π½ΡΡΠ², ΡΡ
ΠΌΡΠ³ΡΠ°ΡΡΡ, ΡΠΌΠΎΠ² Π·ΡΠΏΠΈΠ½ΠΊΠΈ ΡΡΠ΅ΡΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ Π·Π° ΠΊΡΠΈΡΠ΅ΡΡΡΠΌ ΠΌΡΠ½ΡΠΌΡΠΌΡ ΡΡΠ»ΡΠΎΠ²ΠΎΡ ΡΡΠ½ΠΊΡΡΡ ΡΠ° Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΡΠ»ΡΠΎΠ²Π° ΡΡΠ½ΠΊΡΡΡ, ΡΠΎ ΠΌΠ°Ρ ΡΡΠ·ΠΈΡΠ½ΠΈΠΉ ΡΠΌΠΈΡΠ» ΡΡΠΌΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΡΡ ΡΡΠΊΡΠ°Π²ΠΎΡΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ. Π‘ΡΠΎΡΠΌΡΠ»ΡΠΎΠ²Π°Π½ΠΎ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΠΉΠ½Π° Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΡΠ΅ΡΠ΅ΠΆΠ΅Π½Π½Ρ, ΡΠΊΠ° ΠΏΠΎΠ»ΡΠ³Π°Ρ Π² ΠΌΡΠ½ΡΠΌΡΠ·Π°ΡΡΡ ΡΡΠ»ΡΠΎΠ²ΠΎΡ ΡΡΠ½ΠΊΡΡΡ ΠΏΡΠΈ ΠΏΠ΅Π²Π½ΠΈΡ
ΠΏΡΠΈΠΏΡΡΠ΅Π½Π½ΡΡ
ΡΠ° ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π½ΡΡ
.ΠΠ°Π²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ Π΄ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΠΏΡΠ°ΡΠ΅Π·Π΄Π°ΡΠ½ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ²Π°Π½ΠΎΠΌΡ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΏΡΠΈΠΊΠ»Π°Π΄Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ ΠΎΠ±βΡΠΊΡΠΈ ΡΠ½ΡΠ΅ΡΠ΅ΡΡ, Π° ΡΠ°ΠΌΠ΅: ΡΠΌΠ½ΠΎΡΡΡ Π· Π½Π°ΡΡΠΎΡ Π°Π±ΠΎ ΠΏΠ°Π»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ Π»ΡΡΠ°ΠΊΡΠ², Π»ΡΡΠ°ΠΊΠΈ, Π°Π΅ΡΠΎΠ΄ΡΠΎΠΌΠ½Ρ ΡΠΏΠΎΡΡΠ΄ΠΈ ΡΠΎΡΠΎ.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΡΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΡΠ½ΠΊΠ° ΡΠΊΠΎΡΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ. Π ΠΎΠ·ΡΠ°Ρ
ΠΎΠ²Π°Π½Ρ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ ΠΏΠ΅ΡΡΠΎΠ³ΠΎ ΡΠ° Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΎΠ΄Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡΡ ΠΏΡΠ΄Π²ΠΈΡΠΈΡΠΈ ΡΠΊΡΡΡΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ. ΠΡΠΈ ΡΡΠΎΠΌΡ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΏΠ΅ΡΡΠΎΠ³ΠΎ ΡΠ° Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΎΠ΄Ρ Π·Π½ΠΈΠΆΠ΅Π½Ρ Π² ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΠΌΡ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΡΠ΄ 7 % Π΄ΠΎ 33
Π‘Π΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ
It was established that it is not possible to apply the known methods of image segmentation directly to segmentation of optical-electronic images of on-board systems of remote sensing of the Earth. We have stated the mathematical problem on segmentation of such images. It was established that the result of segmentation of images of on-board systems of remote sensing of the Earth is separation of an image into artificial objects (objects of interest) and natural objects (a background). It has been proposed to use the artificial bee colony method for segmentation of images. We described the essence of the method, which provides for determination of agents positions, their migration, conditions for stopping of an iteration process by the criterion of a minimum of a fitness function and determination of the optimal value of a threshold level. The fitness function was introduced, which has the physical meaning of a sum of variance brightness of segments of a segmented image. We formulated the optimization problem of image segmentation of an on-board optical-electronic observation system. It consists in minimization of a fitness function under certain assumptions and constraints.The paper presents results from an experimental study on application of the artificial bee colony method to segmentation of an optical-electronic image. Experimental studies on segmentation of an optical-electronic image confirmed the efficiency of the artificial bee colony method. We identified possible objects of interest on the segmented image, such as tanks with oil or fuel for aircraft, airplanes, airfield facilities, etc.The visual assessment of the quality of segmentation was performed. We calculated errors of the first type and the second type. It was established that application of the artificial bee colony method would improve the quality of processing of optical-electronic images. We observed a decrease of segmentation errors of the first type and the second type by the magnitude from 7Β % to 33Β % on averageΠ£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π°ΠΏΡΡΠΌΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½Ρ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°) ΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΡΠΎΠ½). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ·Π»ΠΎΠΆΠ΅Π½Π° ΡΡΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π°Π³Π΅Π½ΡΠΎΠ², ΠΈΡ
ΠΌΠΈΠ³ΡΠ°ΡΠΈΡ, ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈΡΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅Π»Π΅Π²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΡΠΌΠΌΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΡΠΊΠΎΡΡΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΡ
ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΡ
.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Π΅ΠΌΠΊΠΎΡΡΠΈ Ρ Π½Π΅ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠΎΠ², ΡΠ°ΠΌΠΎΠ»Π΅ΡΡ, Π°ΡΡΠΎΠ΄ΡΠΎΠΌΠ½ΡΠ΅ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π° ΡΠ½ΠΈΠΆΠ΅Π½Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ 7 % Π΄ΠΎ 33 %Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π°ΠΏΡΡΠΌΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½Ρ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΡΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°) ΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ (ΡΠΎΠ½). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ·Π»ΠΎΠΆΠ΅Π½Π° ΡΡΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π°Π³Π΅Π½ΡΠΎΠ², ΠΈΡ
ΠΌΠΈΠ³ΡΠ°ΡΠΈΡ, ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈΡΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅Π»Π΅Π²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΡΠΌΠΌΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΡΠΊΠΎΡΡΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΡ
ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΡ
.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΊ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Π΅ΠΌΠΊΠΎΡΡΠΈ Ρ Π½Π΅ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠΎΠ², ΡΠ°ΠΌΠΎΠ»Π΅ΡΡ, Π°ΡΡΠΎΠ΄ΡΠΎΠΌΠ½ΡΠ΅ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ΄Π° ΡΠ½ΠΈΠΆΠ΅Π½Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ 7% Π΄ΠΎ 33%ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΠ΄ΠΎΠΌΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π½Π΅ ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π½Π°ΠΏΡΡΠΌΡ Π·Π°ΡΡΠΎΡΠΎΠ²Π°Π½Ρ Π΄ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ. Π‘ΡΠΎΡΠΌΡΠ»ΡΠΎΠ²Π°Π½ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Π° Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΡΠ°ΠΊΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ°Π½ΡΡΠΉΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΡΠ²Π°Π½Π½Ρ ΠΠ΅ΠΌΠ»Ρ Ρ ΡΠΎΠ·Π΄ΡΠ»Π΅Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π½Π° ΡΡΡΡΠ½Ρ ΠΎΠ±βΡΠΊΡΠΈ (ΠΎΠ±βΡΠΊΡΠΈ ΡΠ½ΡΠ΅ΡΠ΅ΡΡ) ΡΠ° ΠΏΡΠΈΡΠΎΠ΄Π½Ρ ΠΎΠ±βΡΠΊΡΠΈ (ΡΠΎΠ½). ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ. ΠΠΈΠΊΠ»Π°Π΄Π΅Π½Π° ΡΡΡΠ½ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ, ΡΠΊΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄Π±Π°ΡΠ°Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ Π°Π³Π΅Π½ΡΡΠ², ΡΡ
ΠΌΡΠ³ΡΠ°ΡΡΡ, ΡΠΌΠΎΠ² Π·ΡΠΏΠΈΠ½ΠΊΠΈ ΡΡΠ΅ΡΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ Π·Π° ΠΊΡΠΈΡΠ΅ΡΡΡΠΌ ΠΌΡΠ½ΡΠΌΡΠΌΡ ΡΡΠ»ΡΠΎΠ²ΠΎΡ ΡΡΠ½ΠΊΡΡΡ ΡΠ° Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ²Π½Ρ. ΠΠ²Π΅Π΄Π΅Π½Π° ΡΡΠ»ΡΠΎΠ²Π° ΡΡΠ½ΠΊΡΡΡ, ΡΠΎ ΠΌΠ°Ρ ΡΡΠ·ΠΈΡΠ½ΠΈΠΉ ΡΠΌΠΈΡΠ» ΡΡΠΌΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΡΡ ΡΡΠΊΡΠ°Π²ΠΎΡΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ. Π‘ΡΠΎΡΠΌΡΠ»ΡΠΎΠ²Π°Π½ΠΎ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΠΉΠ½Π° Π·Π°Π΄Π°ΡΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π±ΠΎΡΡΠΎΠ²ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΡΠ΅ΡΠ΅ΠΆΠ΅Π½Π½Ρ, ΡΠΊΠ° ΠΏΠΎΠ»ΡΠ³Π°Ρ Π² ΠΌΡΠ½ΡΠΌΡΠ·Π°ΡΡΡ ΡΡΠ»ΡΠΎΠ²ΠΎΡ ΡΡΠ½ΠΊΡΡΡ ΠΏΡΠΈ ΠΏΠ΅Π²Π½ΠΈΡ
ΠΏΡΠΈΠΏΡΡΠ΅Π½Π½ΡΡ
ΡΠ° ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π½ΡΡ
.ΠΠ°Π²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ Π΄ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΠΏΡΠ°ΡΠ΅Π·Π΄Π°ΡΠ½ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ. ΠΠ° ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ²Π°Π½ΠΎΠΌΡ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΏΡΠΈΠΊΠ»Π°Π΄Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ ΠΎΠ±βΡΠΊΡΠΈ ΡΠ½ΡΠ΅ΡΠ΅ΡΡ, Π° ΡΠ°ΠΌΠ΅: ΡΠΌΠ½ΠΎΡΡΡ Π· Π½Π°ΡΡΠΎΡ Π°Π±ΠΎ ΠΏΠ°Π»ΠΈΠ²ΠΎΠΌ Π΄Π»Ρ Π»ΡΡΠ°ΠΊΡΠ², Π»ΡΡΠ°ΠΊΠΈ, Π°Π΅ΡΠΎΠ΄ΡΠΎΠΌΠ½Ρ ΡΠΏΠΎΡΡΠ΄ΠΈ ΡΠΎΡΠΎ.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π²ΡΠ·ΡΠ°Π»ΡΠ½Π° ΠΎΡΡΠ½ΠΊΠ° ΡΠΊΠΎΡΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ. Π ΠΎΠ·ΡΠ°Ρ
ΠΎΠ²Π°Π½Ρ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ ΠΏΠ΅ΡΡΠΎΠ³ΠΎ ΡΠ° Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΎΠ΄Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΡΡΠ½ΠΎΡ Π±Π΄ΠΆΠΎΠ»ΠΈΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΡΡ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡΡ ΠΏΡΠ΄Π²ΠΈΡΠΈΡΠΈ ΡΠΊΡΡΡΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΠΎΠΏΡΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ. ΠΡΠΈ ΡΡΠΎΠΌΡ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΠΏΠ΅ΡΡΠΎΠ³ΠΎ ΡΠ° Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΎΠ΄Ρ Π·Π½ΠΈΠΆΠ΅Π½Ρ Π² ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΠΌΡ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΡΠ΄ 7 % Π΄ΠΎ 33
Multi-level community interventions for primary stroke prevention: A conceptual approach by the World Stroke Organization
The increasing burden of stroke and dementia emphasizes the need for new, well-tolerated and cost-effective primary prevention strategies that can reduce the risks of stroke and dementia worldwide, and specifically in low- and middle-income countries (LMICs).βThis paper outlines conceptual frameworks of three primary stroke prevention strategies: (a) the βpolypillβ strategy; (b) a βpopulation-wideβ strategy; and (c) a βmotivational population-wideβ strategy.β(a) A polypill containing generic low-dose ingredients of blood pressure and lipid-lowering medications (e.g. candesartan 16βmg, amlodipine 2.5βmg, and rosuvastatin 10βmg) seems a safe and cost-effective approach for primary prevention of stroke and dementia.β(b) A population-wide strategy reducing cardiovascular risk factors in the whole population, regardless of the level of risk is the most effective primary prevention strategy. A motivational population-wide strategy for the modification of health behaviors (e.g. smoking, diet, physical activity) should be based on the principles of cognitive behavioral therapy. Mobile technologies, such as smartphones, offer an ideal interface for behavioral interventions (e.g. Stroke Riskometer app) even in LMICs.β(c) Community health workers can improve the maintenance of lifestyle changes as well as the adherence to medication, especially in resource poor areas. An adequate training of community health workers is a key point
Construction of Methods for Determining the Contours of Objects on Tonal Aerospace Images Based on the Ant Algorithms
A method has been proposed for determining contours of objects on tonal aerospace images based on ant algorithms. The method, in contrast to those already known, takes into consideration patterns in the image formation; the ant algorithm is used for determining the contours. Determining an object's contours in the image has been reduced to calculating the fitness function, the totality of agents' motion areas, and the pheromone concentration along agents' motion routes.We have processed a tonal image for determining the contours of objects using a method based on the ant algorithm. In order to reduce the number of "junk" objects, the main principles and stages of the method for multi-scale processing of aerospace images based on the ant algorithm have been outlined. Determining the contours on images with a different value of the scale factor is carried out applying a method based on the ant algorithm. In addition, we rescale images with a different scale factor value to the original size and calculate the image filter. The resulting image is a pixelwise product of the original image and the image filter.The multiscale processing of tonal aerospace images with different scale values has been performed using methods based on the ant algorithms. It was established that application of a multi-scale processing reduces the number of "junk" objects. At the same time, due to multi-scale processing, not the objects' contours are determined but the objects in full.We estimated errors of first and second kind in determining the contours of objects on tonal aerospace images based on the ant algorithms. It was established that using the constructed methods has made it possible to reduce the first and second kind errors in determining the contours on tonal aerospace images by the magnitude of 18β22 % on averag
Segmentation of Optical-electronic Images From On-board Systems of Remote Sensing of the Earth by the Artificial Bee Colony Method
It was established that it is not possible to apply the known methods of image segmentation directly to segmentation of optical-electronic images of on-board systems of remote sensing of the Earth. We have stated the mathematical problem on segmentation of such images. It was established that the result of segmentation of images of on-board systems of remote sensing of the Earth is separation of an image into artificial objects (objects of interest) and natural objects (a background). It has been proposed to use the artificial bee colony method for segmentation of images. We described the essence of the method, which provides for determination of agents positions, their migration, conditions for stopping of an iteration process by the criterion of a minimum of a fitness function and determination of the optimal value of a threshold level. The fitness function was introduced, which has the physical meaning of a sum of variance brightness of segments of a segmented image. We formulated the optimization problem of image segmentation of an on-board optical-electronic observation system. It consists in minimization of a fitness function under certain assumptions and constraints.The paper presents results from an experimental study on application of the artificial bee colony method to segmentation of an optical-electronic image. Experimental studies on segmentation of an optical-electronic image confirmed the efficiency of the artificial bee colony method. We identified possible objects of interest on the segmented image, such as tanks with oil or fuel for aircraft, airplanes, airfield facilities, etc.The visual assessment of the quality of segmentation was performed. We calculated errors of the first type and the second type. It was established that application of the artificial bee colony method would improve the quality of processing of optical-electronic images. We observed a decrease of segmentation errors of the first type and the second type by the magnitude from 7 % to 33 % on averag