69 research outputs found
Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders
Background
Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families.
Methods
Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter Îł-aminobutyric acid (GABA).
Results
A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals.
Conclusions
This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts
Effects of low birth weight, maternal smoking in pregnancy and social class on the phenotypic manifestation of Attention Deficit Hyperactivity Disorder and associated antisocial behaviour: investigation in a clinical sample
<p>Abstract</p> <p>Background</p> <p>Attention Deficit Hyperactivity Disorder (ADHD) is a genetically influenced condition although indicators of environmental risk including maternal smoking during pregnancy, low birth weight and low social class have also been found to be associated with the disorder.</p> <p>ADHD is a phenotypically heterogeneous disorder in terms of the predominant symptom types (inattention, hyperactive-impulsivity), their severity and comorbidity, notably Conduct Disorder. It is possible that these different clinical manifestations of the disorder may arise because of the differing effects of the environmental indicators of environmental risk. We set out to test this hypothesis.</p> <p>Methods</p> <p>In a sample of 356 children diagnosed with ADHD, we sought to investigate possible effects of three indicators of environmental risk – maternal smoking during pregnancy, birth weight and social class – on comorbid Conduct Disorder, conduct disorder symptoms and inattentive and hyperactive-impulsive symptom severity.</p> <p>Results</p> <p>Multiple regression analysis revealed that, after controlling for significant covariates, greater hyperactive-impulsive symptom severity was significantly associated with maternal smoking during pregnancy (r<sup>2 </sup>= 0.02, Beta = 0.11, t = 1.96, p = 0.05) and social class (r<sup>2 </sup>= 0.02, Beta = 0.12, t = 2.19, p = 0.03) whilst none of the environmental risk indicators significantly predicted number of inattentive symptoms. Conduct Disorder symptoms were positively predicted by maternal smoking in pregnancy (r<sup>2 </sup>= 0.04, Beta = 0.18, t = 3.34, p = 0.001) whilst both maternal smoking during pregnancy and social class significantly predicted a diagnosis of Conduct Disorder (OR = 3.14, 95% CI: 1.54, 6.41, Wald = 9.95, p = 0.002) and (OR = 1.95 95% CI: 1.18, 3.23 Wald = 6.78, p = 0.009) respectively.</p> <p>Conclusion</p> <p>These findings suggest that indicators of environmental risk, in this instance maternal smoking in pregnancy and environmental adversity indexed by lower social class, independently influence the clinical presentation of the ADHD phenotype. Other types of study design are needed to investigate whether these associations between indicators of environmental risk factors and ADHD clinical heterogeneity are attributable to causal risk effects and to further establish the magnitude of these effects. These findings have implications, not only for our understanding of the aetiology of ADHD, but may also be of clinical value, enabling the identification of individuals who are at higher risk of problematic behaviours in ADHD, notably conduct disorder, to enable earlier, targeted risk reduction strategies.</p
The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter
The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability
The Optical Instrumentation of the ATLAS Tile Calorimeter
The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly locations.The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper
Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter
The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tracking systems and the liquid argon barrel electromagnetic calorimeter
Mechanical construction and installation of the ATLAS tile calorimeter
This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight
- …