193 research outputs found

    MoF encapsulation of RU olefin metathesis catalysts to block catalyst decomposition

    Get PDF
    In the present work, a catalyst variation of the second-generation Hoveyda–Grubbs catalyst, particularly the ammonium-tagged Ru-alkylidene metathesis catalyst AquaMetTM, is under study, not simply to increase the efficiency in olefin metathesis but also the solubility in polar solvents. Moreover, this ionic catalyst was combined with the metal organic framework (MOF) (Cr)MIL-101-SO3−(Na·15-crown-5)+. We started from the experimental results by Grela et al., who increased the performance when the ruthenium catalyst was confined inside the cavities of the MOF, achieving non-covalent interactions between both moieties. Here, using density functional theory (DFT) calculations, the role of the ammonium N-heterocyclic carbene (NHC) tagged and the confinement effects are checked. The kinetics are used to compare reaction profiles, whereas SambVca steric maps and NCI plots are used to characterize the role of the MOF structurally and electronically

    The Doping Effect of Fluorinated Aromatic Solvent on the Rate of Ruthenium Catalysed Olefin Metathesis

    Get PDF
    A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained,especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions

    [Pd(NHC)(μ-Cl)Cl]2 : versatile and highly reactive complexes for cross-coupling reactions that avoid formation of inactive Pd(I) off-cycle products

    Get PDF
    Authors thank Rutgers University (M.S.), the NSF (CAREER CHE-1650766, M.S.), and the NIH (1R35GM133326, M.S.) for financial support. The Bruker 500 MHz spectrometer used in this study was supported by the NSF-MRI grant (CHE-1229030). For work conducted in Belgium, S.P.N. and C.S.J.C. wish to thank the UGent BOF (starter and senior research grants). Umicore AG is thanked for gifts of materials. A.P. is a Serra Húnter Fellow and ICREA Academia Prize 2019 holder. A.P. thanks the Spanish MICINN for project PGC2018-097722-B-I00.The development of more reactive, general, easily accessible, and readily available Pd(II)–NHC precatalysts remains a key challenge in homogeneous catalysis. In this study, we establish air-stable NHC–Pd(II) chloro-dimers, [Pd(NHC)(μ-Cl)Cl]2, as the most reactive Pd(II)–NHC catalysts developed to date. Most crucially, compared with [Pd(NHC)(allyl)Cl] complexes, replacement of the allyl throw-away ligand with chloride allows for a more facile activation step, while effectively preventing the formation of off-cycle [Pd2(μ-allyl)(μ-Cl)(NHC)2] products. The utility is demonstrated via broad compatibility with amide cross-coupling, Suzuki cross-coupling, and the direct, late-stage functionalization of pharmaceuticals. Computational studies provide key insight into the NHC–Pd(II) chloro-dimer activation pathway. A facile synthesis of NHC–Pd(II) chloro-dimers in one-pot from NHC salts is reported. Considering the tremendous utility of Pd-catalyzed cross-coupling reactions and the overwhelming success of [Pd(NHC)(allyl)Cl] precatalysts, we believe that NHC–Pd(II) chloro-dimers, [Pd(NHC)(μ-Cl)Cl]2, should be considered as go-to precatalysts of choice in cross-coupling processes.Publisher PDFPeer reviewe

    Insights into mechanism and selectivity in ruthenium(II)-catalysed ortho-arylation reactions directed by Lewis basic groups

    Get PDF
    We report a detailed study of the selectivity of ruthenium-catalysed C-H arylation reactions directed by Lewis basic heterocycles. A reactivity scale for directing power in these reactions, based on the results of intermolecular competition experiments, is reported for the first time. Our work is supported by detailed density functional theory calculations that reveal the underlying mechanism of this reaction, which requires the dissociation of a p-cymene ligand before oxidative addition becomes competent. The calculated energetic span of the catalytic cycles for each substrate is broadly in agreement with our experimental observations. This work advances our understanding of mechanism and selectivity in these reactions, and provides a basis for future catalyst design efforts

    Electronic effects in mixed N-heterocyclic carbene/phosphite indenylidene ruthenium metathesis catalysts

    Get PDF
    The authors gratefully acknowledge the Royal Society (University Research Fellowship to CSJC), the EC (CP-FP 211468-2 EUMET and CIG09-GA-2011-293900) and the MICINN (PGC2018-097722-B-I00 to AP) for funding.Five new complexes [RuCl2(SIMes)(Ind)(O-pXC5H4)] bearing different para-substituted triphenylphosphites (X = H, OCH3, CF3, Cl, SF5 and CN) were synthesised and used to study the effect of the electronic properties of the phosphite on olefin metathesis activity. Investigations of the physical properties of the new ligands and complexes were performed using physicochemical and DFT calculations. The catalytic activity of the complexes was benchmarked in challenging ring closing metathesis transformations featuring the formation of tetra-substituted double bonds. Complex [RuCl2(SIMes)(Ind)P(O-pCF3C5H4)3] (3c) exhibited a particularly high catalytic activity, superior to state-of-the-art catalysts, and was further tested on a wide range of substrates.PostprintPeer reviewe

    The preference for dual-gold(I) catalysis in the hydro(alkoxylation vs phenoxylation) of alkynes

    Get PDF
    Dinuclear gold complexes and their use in catalysis have received significant recent attention, but there are few critical comparisons of mono- versus dual gold-catalysed pathways. Herein we study the hydroalkoxylation and hydrophenoxylation of alkynes using density functional theory calculations, and compare two possible mechanisms that have been proposed previously on the basis of theoretical and experimental studies, which unravel different preferences because of both the nature of the alkyne and alcohol, as well as the non-innocent role of the counter-anion of the dual gold based catalyst. Entropy is found to have a significant effect, rendering the nucleophilic attack of the monoaurated intermediate [Au(L)(η2-alkyne)]+ difficult both kinetically and thermodynamically; this mechanism cannot easily form only the trans-alkene product that is observed experimentally. Instead, reaction via a dual gold catalysed mechanism presents much lower barriers. In addition, for the sake of direct comparison with recent results by Belanzoni, Zuccaccia, oversimplification of the N-heterocyclic carbene (NHC) ligand in the calculations might decrease the enthalpy barrier and lead to results that are not directly applicable to experiment. Moreover, the alkylic or arylic nature of the alkyne and/or alcohol is also tested

    On the mechanism of the digold(I) hydroxide-catalyzed hydrophenoxylation of alkynes

    Get PDF
    Herein we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes, using both experimental and computational methods. The dissociation of [{Au(NHC)}2(µ-OH)][BF4] is essential to enter the catalytic cycle; this step is favored in the presence of bulky, non-coordinating counterions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but as a co-catalyst, lowering the energy barriers for several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an ‘off-cycle’ rather than an ‘in-cycle’ intermediate

    Investigating the structure and reactivity of azolyl-based copper(I)-NHC complexes : the role of the anionic ligand

    Get PDF
    The authors gratefully acknowledge the Royal Society (University Research Fellowship to C.S.J.C.), the Spanish MINECO (CTQ2014-59832-JIN), and EU (FEDER fund UNGI08-4E-003) for funding.A family of copper(I)-NHC azolyl complexes was synthesized and deployed in the hydrosilylation of dicyclo-hexylketone to probe the role of the anionic ligand on catalytic performance. The azolyl ligand is shown to have a crucial role in catalytic activity without the need for additives, and this at very low catalyst loading.PostprintPeer reviewe
    • …
    corecore