34 research outputs found

    The Mondrian Data Engine

    Get PDF
    The increasing demand for extracting value out of ever-growing data poses an ongoing challenge to system designers, a task only made trickier by the end of Dennard scaling. As the performance density of traditional CPU-centric architectures stagnates, advancing compute capabilities necessitates novel architectural approaches. Near-memory processing (NMP) architectures are reemerging as promising candidates to improve computing efficiency through tight coupling of logic and memory. NMP architectures are especially fitting for data analytics, as they provide immense bandwidth to memory-resident data and dramatically reduce data movement, the main source of energy consumption. Modern data analytics operators are optimized for CPU execution and hence rely on large caches and employ random memory accesses. In the context of NMP, such random accesses result in wasteful DRAM row buffer activations that account for a significant fraction of the total memory access energy. In addition, utilizing NMP’s ample bandwidth with fine-grained random accesses requires complex hardware that cannot be accommodated under NMP’s tight area and power constraints. Our thesis is that efficient NMP calls for an algorithm-hardware co-design that favors algorithms with sequential accesses to enable simple hardware that accesses memory in streams. We introduce an instance of such a co-designed NMP architecture for data analytics, the Mondrian Data Engine. Compared to a CPU-centric and a baseline NMP system, the Mondrian Data Engine improves the performance of basic data analytics operators by up to 49× and 5×, and efficiency by up to 28× and 5×, respectively

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    EXA2PRO programming environment:Architecture and applications

    Get PDF
    The EXA2PRO programming environment will integrate a set of tools and methodologies that will allow to systematically address many exascale computing challenges, including performance, performance portability, programmability, abstraction and reusability, fault tolerance and technical debt. The EXA2PRO tool-chain will enable the efficient deployment of applications in exascale computing systems, by integrating high-level software abstractions that offer performance portability and efficient exploitation of exascale systems' heterogeneity, tools for efficient memory management, optimizations based on trade-offs between various metrics and fault-tolerance support. Hence, by addressing various aspects of productivity challenges, EXA2PRO is expected to have significant impact in the transition to exascale computing, as well as impact from the perspective of applications. The evaluation will be based on 4 applications from 4 different domains that will be deployed in JUELICH supercomputing center. The EXA2PRO will generate exploitable results in the form of a tool-chain that support diverse exascale heterogeneous supercomputing centers and concrete improvements in various exascale computing challenges

    Comparison of Psychological Distress between Type 2 Diabetes Patients with and without Proteinuria

    Get PDF
    We investigated the link between proteinuria and psychological distress among patients with type 2 diabetes mellitus (T2DM). A total of 130 patients with T2DM aged 69.1±10.3 years were enrolled in this cross-sectional study. Urine and blood parameters, age, height, body weight, and medications were analyzed, and each patient’s psychological distress was measured using the six-item Kessler Psychological Distress Scale (K6). We compared the K6 scores between the patients with and without proteinuria. Forty-two patients (32.3%) had proteinuria (≄±) and the level of HbA1c was 7.5±1.3%. The K6 scores of the patients with proteinuria were significantly higher than those of the patients without proteinuria even after adjusting for age and sex. The clinical impact of proteinuria rather than age, sex and HbA1c was demonstrated by a multiple regression analysis. Proteinuria was closely associated with higher psychological distress. Preventing and improving proteinuria may reduce psychological distress in patients with T2DM

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    DeSyRe: On-demand system reliability

    Get PDF
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect-/fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints. (C) 2013 Elsevier B.V. All rights reserved

    Cache Performance of the Integer SPEC Benchmarks on a RISC

    No full text
    ABSTRACT SPEC is a new set of benchmark programs designed to measure a computer system's performance. The performance measured by benchmarks is strongly affected by the existence and configuration of cache memory. In this paper we evaluate the cache miss ratio of the Integer SPEC benchmarks. We show that the cache miss ratio depends strongly on the program, and that large caches are not completely exercised by these benchmarks
    corecore