112 research outputs found

    The Impact of Lab4 Probiotic Supplementation in a 90-Day Study in Wistar Rats

    Get PDF
    The anti-inflammatory and cholesterol lowering capabilities of probiotic bacteria highlight them as potential prophylactics against chronic inflammatory diseases, particularly cardiovascular disease. Previous studies in silico, in vitro, and in vivo suggest that the Lab4 probiotic consortium may harbour such capabilities and in the current study, we assessed plasma levels of cytokines/chemokines, short chain fatty acids and lipids and faecal levels of bile acids in a subpopulation of healthy Wistar rats included in 90-day repeat dose oral toxicity study. In the rats receiving Lab4, circulating levels of pro-inflammatory interleukin-6, tumour necrosis factor-α and keratinocyte chemoattractant/growth regulated oncogene were significantly lower compared to the control group demonstrating a systemic anti-inflammatory effect. These changes occurred alongside significant reductions in plasma low density lipoprotein cholesterol and increases in faecal bile acid excretion implying the ability to lower circulating cholesterol via the deconjugation of intestinal bile acids. Correlative analysis identified significant associations between plasma tumour necrosis factor-α and the plasma total cholesterol:high density lipoprotein cholesterol ratio and faecal levels of bifidobacteria in the Lab4 rats. Together, these data highlight Lab4 supplementation as a holistic approach to CVD prevention and encourages further studies in humans

    A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being

    Get PDF
    In an exploratory, block-randomised, parallel, double-blind, single-centre, placebo-controlled superiority study (ISRCTN12562026, funded by Cultech Ltd), 220 Bulgarian participants (30 to 65 years old) with BMI 25–34.9 kg/m2 received Lab4P probiotic (50 billion/day) or a matched placebo for 6 months. Participants maintained their normal diet and lifestyle. Primary outcomes were changes in body weight, BMI, waist circumference (WC), waist-to-height ratio (WtHR), blood pressure and plasma lipids. Secondary outcomes were changes in plasma C-reactive protein (CRP), the diversity of the faecal microbiota, quality of life (QoL) assessments and the incidence of upper respiratory tract infection (URTI). Significant between group decreases in body weight (1.3 kg, p < 0.0001), BMI (0.045 kg/m2, p < 0.0001), WC (0.94 cm, p < 0.0001) and WtHR (0.006, p < 0.0001) were in favour of the probiotic. Stratification identified greater body weight reductions in overweight subjects (1.88%, p < 0.0001) and in females (1.62%, p = 0.0005). Greatest weight losses were among probiotic hypercholesterolaemic participants (−2.5%, p < 0.0001) alongside a significant between group reduction in small dense LDL-cholesterol (0.2 mmol/L, p = 0.0241). Improvements in QoL and the incidence rate ratio of URTI (0.60, p < 0.0001) were recorded for the probiotic group. No adverse events were recorded. Six months supplementation with Lab4P probiotic resulted in significant weight reduction and improved small dense low-density lipoprotein-cholesterol (sdLDL-C) profiles, QoL and URTI incidence outcomes in overweight/obese individuals

    A genome guided evaluation of the Lab4 probiotic consortium

    Get PDF
    In this study, we present the draft genome sequences of the Lab4 probiotic consortium using whole genome sequencing. Draft genome sequences were retrieved and deposited for each of the organisms; PRJNA559984 for B. bifidum CUL20, PRJNA482335 for Lactobacillus acidophilus CUL60, PRJNA482434 for Lactobacillus acid. Probiogenomic in silico analyses confirmed existing taxonomies and identified the presence putative gene sequences that were functionally related to the performance of each organism during in vitro assessments of bile and acid tolerability, adherence to enterocytes and susceptibility to antibiotics. Predictions of genomic stability identified no significant risk of horizontal gene transfer in any of the Lab4 strains and the absence of both antibiotic resistance and virulence genes. These observations were supported by the outcomes of acute phase and repeat dose tolerability studies in Wistar rats where challenge with high doses of Lab4 did not result in any mortalities, clinical/histopathological abnormalities nor indications of systemic toxicity. Detection of increased numbers of lactobacilli and bifidobacteria in the faeces of supplemented rats implied an ability to survive transit through the gastrointestinal tract and/or impact upon the intestinal microbiota composition. In summary, this study provides in silico, in vitro and in vivo support for probiotic functionality and the safety of the Lab4 consortium

    The gastrointestinal status of healthy adults: a post hoc assessment of the impact of three distinct probiotics

    Get PDF
    There is a growing awareness that supplementation with probiotic bacteria can impart beneficial effects during gastrointestinal disease, but less is known about the impact of probiotics on healthy subjects. Here, we report the outcomes of a post hoc analysis of recorded daily gastrointestinal events and bowel habits completed by healthy adults participating in a placebo-controlled, single-centre, randomised, double-blind, quadruple-arm probiotic tolerability study. Extensive screening ensured the healthy status of subjects entering the study and during a 2-week pre-intervention run-in period, a burden of gastrointestinal events (stomach pains, indigestion, acid reflux, stomach tightening, nausea and vomiting, stomach rumbling, bloating, belching and flatulence) was identified suggesting GI discomfort within the population. In the subsequent 12-week intervention period with 3 distinct probiotic formulations and a matched-placebo, reductions in the incidence rates of bloating, borborygmus, stomach pains, slow faecal transit and incomplete defecations were observed in the probiotic groups compared to the placebo. These results highlighted differing responses among the probiotic formulations tested and indicated potential anti-constipation effects. Product specific modulations in circulating interleukin-6 levels and in the composition of the gut microbiota were also detected. Together, these data suggest a role for probiotic supplementation to exert beneficial effects on the gastrointestinal functioning of healthy subjects and highlight the need for further longer-term studies in healthy populations to gain a greater understanding of the impact of probiotics

    Comparison of risk factors for squamous cell and adenocarcinomas of the cervix: a meta-analysis

    Get PDF
    While most cancers of the uterine cervix are squamous cell carcinomas, the relative and absolute incidence of adenocarcinoma of the uterine cervix has risen in recent years. It is not clear to what extent risk factors identified for squamous cell carcinoma of the cervix are shared by cervical adenocarcinomas. We used data from six case-control studies to compare directly risk factors for cervical adenocarcinoma (910 cases) and squamous cell carcinoma (5649 cases) in a published data meta-analysis. The summary odds ratios and tests for differences between these summaries for the two histological types were estimated using empirically weighted least squares. A higher lifetime number of sexual partners, earlier age at first intercourse, higher parity and long duration of oral contraceptive use were risk factors for both histological types. Current smoking was associated with a significantly increased risk of squamous cell carcinoma, with a summary odds ratio of 1.47 (95% confidence interval: 1.15-1.88), but not of adenocarcinoma (summary odds ratio=0.82 (0.60-1.11); test for heterogeneity between squamous cell and adenocarcinoma for current smoking: P=0.001). The results of this meta-analysis of published data suggest that squamous cell and adenocarcinomas of the uterine cervix, while sharing many risk factors, may differ in relation to smoking. Further evidence is needed to confirm this in view of the limited data available

    Genetic Variation in the Complete MgPa Operon and Its Repetitive Chromosomal Elements in Clinical Strains of Mycoplasma genitalium

    Get PDF
    Mycoplasma genitalium has been increasingly recognized as an important microbe not only because of its significant association with human genital tract diseases but also because of its utility as a model for studying the minimum set of genes necessary to sustain life. Despite its small genome, 4.7% of the total genome sequence is devoted to making the MgPa adhesin operon and its nine chromosomal repetitive elements (termed MgPars). The MgPa operon, along with 9 MgPars, is believed to play an important role in pathogenesis of M. genitalium infection and has also served as the main target for development of diagnostic tools. However, genetic variation in the complete MgPa operon and MgPars among clinical strains of M. genitalium has not been addressed. In this study we examined the genetic variation in the complete MgPa operon (approximately 8.5 kb) and full or partial MgPar sequences (0.4–2.6 kb) in 15 geographically diverse strains of M. genitalium. Extensive variation was present in four repeat regions of the MgPa operon (with homology to MgPars) among and within strains while the non-repeat regions (without homology to MgPars) showed low-level variation among strains and no variation within strains. MgPars showed significant variation among strains but were highly homogeneous within strains, supporting gene conversion as the likely recombination mechanism. When applying our sequence data to evaluate published MgPa operon-based diagnostic PCR assays and genotyping systems, we found that 11 of 19 primers contain up to 19 variable nucleotides and that the target for one of two typing systems is located in a hypervariable repeat region, suggesting the likelihood of false results with some of these assays. This study not only provides new insights into the role of the MgPa operon in the pathogenesis of M. genitalium infection but has important implications for the development of diagnostic tools

    No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi)

    Get PDF
    Endemic species with restricted geographic ranges potentially suffer the highest risk of extinction. If these species are further fragmented into genetically isolated subpopulations, the risk of extinction is elevated. Habitat fragmentation is generally considered to have negative effects on species survival, despite some evidence for neutral or even positive effects. Typically, non-negative effects are ignored by conservation biology. The Montseny brook newt (Calotriton arnoldi) has one of the smallest distribution ranges of any European amphibian (8 km2) and is considered critically endangered by the International Union for Conservation of Nature. Here we apply molecular markers to analyze its population structure and find that habitat fragmentation owing to a natural barrier has resulted in strong genetic division of populations into two sectors, with no detectable migration between sites. Although effective population size estimates suggest low values for all populations, we found low levels of inbreeding and relatedness between individuals within populations. Moreover, C. arnoldi displays similar levels of genetic diversity to its sister species Calotriton asper, from which it separated around 1.5 million years ago and which has a much larger distribution range. Our extensive study shows that natural habitat fragmentation does not result in negative genetic effects, such as the loss of genetic diversity and inbreeding on an evolutionary timescale. We hypothesize that species in such conditions may evolve strategies (for example, special mating preferences) to mitigate the effects of small population sizes. However, it should be stressed that the influence of natural habitat fragmentation on an evolutionary timescale should not be conflated with anthropogenic habitat loss or degradation when considering conservation strategies

    Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii

    Get PDF
    To explore the potential of Ashbya gossypii as a host for the expression of recombinant proteins and to assess whether protein secretion would be more similar to the closely related Saccharomyces cerevisiae or to other filamentous fungi, endoglucanase I (EGI) and cellobiohydrolase I (CBHI) from the fungus Trichoderma reesei were successfully expressed in A. gossypii from plasmids containing the two micron sequences from S. cerevisiae, under the S. cerevisiae PGK1 promoter. The native signal sequences of EGI and CBHI were able to direct the secretion of EGI and CBHI into the culture medium in A. gossypii. Although CBHI activity was not detected using 4- methylumbelliferyl-β-D-lactoside as substrate, the protein was detected by Western blot using monoclonal antibodies. EGI activity was detectable, the specific activity being comparable to that produced by a similar EGI producing S. cerevisiae construct. More EGI was secreted than CBHI, or more active protein was produced. Partial characterization of CBHI and EGI expressed in A. gossypii revealed overglycosylation when compared with the native T. reesei proteins, but the glycosylation was less extensive than on cellulases expressed in S. cerevisiae.Fundação para a Ciência e a Tecnologia (FCT

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated
    corecore