57 research outputs found

    Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Get PDF
    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions

    Isokinetic muscle function comparison of lower limbs among elderly fallers and non-fallers

    Get PDF
    O objetivo deste estudo foi identificar se há diferenças entre o desempenho muscular de tornozelo, joelho e quadril em idosos com e sem relato de queda nos últimos seis meses. Foram incluídos 81 idosos com 65 anos ou mais: 56 negaram quedas (G1) e 25 relataram quedas (G2). Utilizou-se o questionário perfil de atividade humana para medir o nível de atividade física, e o dinamômetro isocinético para mensurar os parâmetros físicos da função muscular. Os grupos não diferiram entre si em relação à idade (p=0,925), duração (p=0,065) e frequência (p=0,302) da prática do exercício físico, índice de massa corpórea (p=0,995) e nível de atividade física (p=0,561). O G2 apresentou menor desempenho para as variáveis pico de torque de flexão e extensão de joelho esquerdo (p=0,027 e p=0,030, respectivamente) e trabalho por peso corporal (p=0,040) de flexão de joelho esquerdo a 60°/s; pico de torque e trabalho por peso corporal de flexão e extensão de joelho a 180°/s bilateralmente (p<0,050); e potência média de flexão de joelhos direito e esquerdo (p=0,030). A maioria das variáveis do tornozelo e quadril não apresentou diferenças entre os grupos. Apenas a variável pico de torque de extensão de quadril esquerdo foi significativamente maior no G1 (p=0,035). É importante considerar a função muscular do joelho na avaliação clínica de idosos para direcionar a intervenção terapêutica e a prevenção de quedas.The aim of this study was to identify whether there are differences between the performance of muscular groups of ankle, knee and hip among elderly people who didn't have falls and individuals who reported falls in the last six months. The study included 81 elderly aged 65 or older: 56 non-faller subjects (G1) and 25 faaller subjects (G2). To obtain the level of physical activity, the questionnaire Human Activity Profile was used, and the muscle function of the lower limbs was assessed using isokinetic dynamometer. The groups did not differ regarding age (p=0.925), duration (p=0.065) and frequency (p=0.302) of the practice of physical exercise, body mass index (BMI) (p=0.995) and level of physical activity (p=0.561). The G2 showed a lower performance of peak torque of left knee flexion and extension (p=0.027 and p=0.030, respectively) and work proportional to body weight (p=0.040) of left knee flexion at 60°/s; peak torque and work proportional to body weight of bilaterally knee flexion and extension at 180°/s (p<0.05) and average power of right and left knee extension (p=0.03). Most variables of ankle and hip joints did not differ between groups. Only peak torque of left hip extension was significantly higher in the non-faller group (p=0.035). It is important to consider knee muscle function in the clinical evaluation of elderly in order to make the intervention more assertive and thus to prevent falls

    Effect of cross exercise on quadriceps acceleration reaction time and subjective scores (Lysholm questionnaire) following anterior cruciate ligament reconstruction

    Get PDF
    Abstract Background Anterior cruciate ligament (ACL) injury or reconstruction can cause knee impairments and disability. Knee impairments are related to quadriceps performance – accelerated reaction time (ART) – and disability to performance of daily living activities which is assessed by questionnaires such as the Lysholm knee score. The purposes of this study were to investigate the effect of cross exercise, as supplementary rehabilitation to the early phase of ACL reconstruction: a) on quadriceps ART at the angles 45°, 60° and 90° of knee flexion and, b) on the subjective scores of disability in ACL reconstructed patients. Methods 42 patients who underwent ACL reconstruction were randomly divided into 3 groups, two experimental and one control. All groups followed the same rehabilitation program. The experimental groups followed 8 weeks of cross eccentric exercise (CEE) on the uninjured knee; 3 d/w, and 5 d/w respectively. Quadriceps ART was measured at 45°, 60° and 90° of knee flexion pre and nine weeks post-operatively using an isokinetic dynamometer. Patients also completed pre and post operatively the Lysholm questionnaire whereby subjective scores were recorded. Results Two factor ANOVA showed significant differences in ART at 90° among the groups (F = 4.29, p = 0.02, p Significant differences were also found in the Lysholm score among the groups (F = 4.75, p = 0.01, p Conclusion CEE showed improvements on quadriceps ART at 90° at a sequence of 3 d/w and in the Lysholm score at a sequence of 3 d/w and 5 d/w respectively on ACL reconstructed patients.</p

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore