14 research outputs found

    Influence of common lighting conditions and time-of-day on the effort-related cardiac response

    Get PDF
    Melanopic stimuli trigger diverse non-image-forming effects. However, evidence of a melanopic contribution to acute effects on alertness and performance is inconclusive, especially under common lighting situations. Effects on cognitive performance are likely mediated by effort-related physiological changes. We assessed the acute effects of lighting in three scenarios, at two times of day, on effort-related changes to cardiac contraction as indexed by the cardiac pre-ejection period (PEP). In a within-subject design, twenty-seven participants performed a cognitive task thrice during a morning and a late-afternoon session. We set the lighting at 500 lux in all three lighting scenarios, measured horizontally at the desk level, but with 54 lux, 128 lux, or 241 lux melanopic equivalent daylight illuminance at the eye level. Impedance cardiography and electrocardiography measurements were used to calculate PEP, for the baseline and task period. A shorter PEP during the task represents a sympathetic heart activation and therefore increased effort. Data were analysed with linear mixed-effect models. PEP changes depended on both the light scene and time of day (p = 0.01 and p = 0.002, respectively). The highest change (sympathetic activation) occurred for the medium one of the three stimuli (128 lux) during the late-afternoon session. However, effect sizes for the singular effects were small, and only for the combined effect of light and time of day middle-sized. Performance scores or self-reported scores on alertness and task demand did not change with the light scene. In conclusion, participants reached the same performance most efficiently at both the highest and lowest melanopic setting, and during the morning session. The resulting U-shaped relation between melanopic stimulus intensity and PEP is likely not dependent solely on intrinsic ipRGC stimuli, and might be moderated by extrinsic cone input. Since lighting situations were modelled according to current integrative lighting strategies and real-life indoor light intensities, the result has implications for artificial lighting in a work environment

    Soliton approach to the noisy Burgers equation: Steepest descent method

    Full text link
    The noisy Burgers equation in one spatial dimension is analyzed by means of the Martin-Siggia-Rose technique in functional form. In a canonical formulation the morphology and scaling behavior are accessed by mean of a principle of least action in the asymptotic non-perturbative weak noise limit. The ensuing coupled saddle point field equations for the local slope and noise fields, replacing the noisy Burgers equation, are solved yielding nonlinear localized soliton solutions and extended linear diffusive mode solutions, describing the morphology of a growing interface. The canonical formalism and the principle of least action also associate momentum, energy, and action with a soliton-diffusive mode configuration and thus provides a selection criterion for the noise-induced fluctuations. In a ``quantum mechanical'' representation of the path integral the noise fluctuations, corresponding to different paths in the path integral, are interpreted as ``quantum fluctuations'' and the growth morphology represented by a Landau-type quasi-particle gas of ``quantum solitons'' with gapless dispersion and ``quantum diffusive modes'' with a gap in the spectrum. Finally, the scaling properties are dicussed from a heuristic point of view in terms of a``quantum spectral representation'' for the slope correlations. The dynamic eponent z=3/2 is given by the gapless soliton dispersion law, whereas the roughness exponent zeta =1/2 follows from a regularity property of the form factor in the spectral representation. A heuristic expression for the scaling function is given by spectral representation and has a form similar to the probability distribution for Levy flights with index zz.Comment: 30 pages, Revtex file, 14 figures, to be submitted to Phys. Rev.

    Fibroblast growth factor 23 is related to profiles indicating volume overload, poor therapy optimization and prognosis in patients with new-onset and worsening heart failure

    Get PDF
    Background: Fibroblast growth factor (FGF) 23 is a hormone that increases urinary phosphate excretion and regulates renal sodium reabsorption and plasma volume. We studied the role of plasma FGF23 in therapy optimization and outcomes in patients with new-onset and worsening heart failure (HF). Methods: We measured plasma C-terminal FGF23 levels at baseline in 2399 of the 2516 patients included in the BIOlogy Study to Tailored Treatment in Chronic HF (BIOSTAT-CHF) trial. The association between FGF23 and outcome was evaluated by Cox regression analysis adjusted for potential confounders. Results: Median FGF23 was 218.0 [IQR: 117.1–579.3] RU/ml; patients with higher FGF23 levels had a worse NYHA class, more signs of congestion, and were less likely to use an ACE-inhibitor (ACEi) or angiotensin receptor blocker (ARBs) at baseline (all P < 0.01). Higher FGF23 levels were independently associated with higher BNP, lower eGFR, the presence of oedema and atrial fibrillation (all P < 0.001). In addition, higher FGF23 was independently associated with impaired uptitration of ACEi/ARBs after 3 months, but not of beta-blockers. In multivariable Cox regression analysis, FGF23 was independently associated with all-cause mortality (hazard ratio: 1.17 (1.09–1.26) per log increase, P < 0.001), and the combined endpoint of all-cause mortality and HF hospitalization (1.15 (1.08–1.22) per log increase, P < 0.001). Conclusions: In patients with new-onset and worsening HF, higher plasma FGF23 levels were independently associated with volume overload, less successful uptitration of ACEi/ARBs and an increased risk of all-cause mortality and HF hospitalization

    Sobre a origem amerĂ­ndia de alguns conceitos geogrĂĄficos

    No full text

    Renal function estimation and Cockcroft–Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart ‘OMics’ in AGEing (HOMAGE) and the high-risk myocardial infarction database initiatives

    Get PDF
    Background: Renal impairment is a major risk factor for mortality in various populations. Three formulas are frequently used to assess both glomerular filtration rate (eGFR) or creatinine clearance (CrCl) and mortality prediction: body surface area adjusted-Cockcroft–Gault (CG-BSA), Modification of Diet in Renal Disease Study (MDRD4), and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The CKD-EPI is the most accurate eGFR estimator as compared to a “gold-standard”; however, which of the latter is the best formula to assess prognosis remains to be clarified. This study aimed to compare the prognostic value of these formulas in predicting the risk of cardiovascular mortality (CVM) in population-based, cardiovascular risk, heart failure (HF) and post-myocardial infarction (MI) cohorts. Methods: Two previously published cohorts of pooled patient data derived from the partners involved in the HOMAGE-consortium and from four clinical trials – CAPRICORN, EPHESUS, OPTIMAAL and VALIANT – the high risk MI initiative, were used. A total of 54,111 patients were included in the present analysis: 2644 from population-based cohorts; 20,895 from cardiovascular risk cohorts; 1801 from heart failure cohorts; and 28,771 from post-myocardial infarction cohorts. Participants were patients enrolled in the respective cohorts and trials. The primary outcome was CVM. Results: All formulas were strongly and independently associated with CVM. Lower eGFR/CrCl was associated with increasing CVM rates for values below 60 mL/min/m2. Categorical renal function stages diverged in a more pronounced manner with the CG-BSA formula in all populations (higher χ2 values), with lower stages showing stronger associations. The discriminative improvement driven by the CG-BSA formula was superior to that of MDRD4 and CKD-EPI, but remained low overall (increase in C-index ranging from 0.5 to 2%) while not statistically significant in population-based cohorts. The integrated discrimination improvement and net reclassification improvement were higher (P < 0.05) for the CG-BSA formula compared to MDRD4 and CKD-EPI in CV risk, HF and post-MI cohorts, but not in population-based cohorts. The CKD-EPI formula was superior overall to MDRD4. Conclusions: The CG-BSA formula was slightly more accurate in predicting CVM in CV risk, HF, and post-MI cohorts (but not in population-based cohorts). However, the CG-BSA discriminative improvement was globally low compared to MDRD4 and especially CKD-EPI, the latter offering the best compromise between renal function estimation and CVM prediction. Electronic supplementary material The online version of this article (doi:10.1186/s12916-016-0731-2) contains supplementary material, which is available to authorized users
    corecore