11 research outputs found

    The Impact of Renewable Power Generation and Extreme Weather Events on the Stability and Resilience of AC Power Grids

    Get PDF
    Der erste Teil dieser Arbeit beschäftigt sich mit der Frage, welchen Einfluss kurzzeitige Schwankungen der erneuerbaren Energiequellen auf die synchrone Netzfrequenz haben. Zu diesem Zweck wird eine lineare Antworttheorie für stochastische Störungen von dynamischen Systemen auf Netzwerken hergeleitet. Anschließend wird diese Theorie verwendet, um den Einfluss von kurzfristigen Wind- und Sonnenschwankungen auf die Netzdynamik zu analysieren. Hierbei wird gezeigt, dass die Frequenzantwort des Netzes weitestgehend homogen ist, aber die Anfälligkeit für Leistungsschwankungen aufgrund von Leitungsverlusten entlang des Leistungsflusses zunimmt. Der zweite Teil der Arbeit befasst sich mit der Modellierung von netzbildenden Wechselrichterregelungen. Bislang existiert kein universelles Modell zur Beschreibung der kollektiven Dynamik solcher Systeme. Um dies zu erreichen, wird unter Ausnutzung der inhärenten Symmetrie des synchronen Betriebszustandes eine Normalform für netzbildende Akteure abgeleitet. Anschließend wird gezeigt, dass dieses Modell eine gute Annäherung an typische Wechselrichter-Dynamiken bietet, aber auch für eine datengesteuerte Modellierung gut geeignet ist. Der letzte Teil der Arbeit befasst sich mit der Analyse des Risikos von Stromausfällen, welche durch Hurrikans verursacht werden. Hohe Windgeschwindigkeiten verursachen häufig Schäden an der Übertragungsinfrastruktur, welche wiederum zu Überlastungen anderer Komponenten führen und damit eine Kaskade von Ausfällen im gesamten Netz auslösen können. Simulationen solcher Szenarien werden durch die Kombination eines meteorologischen Windmodells sowie eines Modells für kaskadierende Leitungsausfälle durchgeführt. Durch Monte-Carlo-Simulationen in einer synthetischen Nachbildung des texanischen Übertragungsnetzes können einzelne kritische Leitungen identifiziert werden, welche zu großflächigen Stromausfällen führen.The first part of this thesis addresses the question which impact short-term renewable fluctuations have on the synchronous grid frequency. For this purpose, a linear response theory for stochastic perturbations of networked dynamical systems is derived. This theory is then used to analyze the impact of short-term wind and solar fluctuations on the grid frequency. It is shown that while the network frequency response is mainly homogenous, the susceptibility to power fluctuations is increasing along the power flow due to transmission line losses. The second part of the thesis is concerned with modeling grid-forming inverter controls. So far there exists no universal model for studying the collective dynamics of such systems. By utilizing the inherent symmetry of the synchronous operating state, a normal form for grid-forming actors is derived. It is shown that this model provides a useful approximation of certain inverter control dynamics but is also well-suited for a data-driven modeling approach. The last part of the thesis deals with analyzing the risk of hurricane-induced power outages. High wind speeds often cause damage to transmission infrastructure which can lead to overloads of other components and thereby induce a cascade of failures spreading through the entire grid. Simulations of such scenarios are implemented by combining a meteorological wind field model with a model for cascading line failures. Using Monte Carlo simulations in a synthetic test case resembling the Texas transmission system, it is possible to identify critical lines that trigger large-scale power outages

    Bounds and Estimates for the Response to Correlated Fluctuations in Asymmetric Complex Networks

    Full text link
    We study the spreading of correlated fluctuations through networks with asymmetric and weighted coupling. This can be found in many real systems such as renewable power grids. These systems have so far only been studied numerically. By formulating a network adapted linear response theory, we derive an analytic bound for the response. For colored we find that vulnerability patterns noise are linked to the left Laplacian eigenvectors of the overdamped modes. We show for a broad class of tree-like flow networks, that fluctuations are enhanced in the opposite direction of the flow. This novel mechanism explains vulnerability patterns that were observed in realistic simulations of renewable power grids

    A Framework for Synthetic Power System Dynamics

    Full text link
    Information on power grids is confidential and thus real data is often inaccessible. This necessitates the use of synthetic power grid models in research. So far the models used, for example, in machine learning had to be very simple and homogeneous to produce large ensembles of robust grids. We present a modular framework to generate synthetic power grids that considers the heterogeneity of real power grid dynamics but remains simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. We also include the major drivers of fluctuations on short-time scales. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should be expected for realistic power grids. This opens the door to future research that studies grids under severe stress due to extreme events which could lead to destabilization and black-outs. A software package that includes an efficient Julia implementation of the framework is released as a companion to the paper

    Epidemics with mutating infectivity on small-world networks

    Get PDF
    Epidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent's infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation

    PowerDynamics.jl—An experimentally validated open-source package for the dynamical analysis of power grids

    Get PDF
    PowerDynamics.jl is a Julia package for time-domain modeling of power grids that is specifically designed for the stability analysis of systems with high shares of renewable energies. It makes use of Julia’s state-of-the-art differential equation solvers and is highly performant even for systems with a large number of components. Further, it is compatible with Julia’s machine learning libraries and allows for the utilization of these methods for dynamical optimization and parameter fitting. The package comes with a number of predefined models for synchronous machines, transmission lines and inverter systems. However, the strict open-source approach and a macro-based user-interface also allows for an easy implementation of custom-built models which makes it especially interesting for the design and testing of new control strategies for distributed generation units. This paper presents how the modeling concept, implemented component models and fault scenarios have been experimentally tested against measurements in the microgrid lab of TECNALIA.This research has been performed using the ERIGrid Research Infrastructure and is part of a project that has received funding from the European Union’s Horizon 2020 Research and Innova-tion Programme under the Grant Agreement No. 654113. The support of the European Research Infrastructure ERIGrid and its partner TECNALIA is very much appreciated. We further acknowl-edge the Support by BMBF(CoNDyNet2FK.03EK3055A), the DFG (ExSyCo-Grid, 410409736), the Leibniz competition (T42/2018) and the Federal Ministry of Economics (MAriE, FK. 03Ei4012B)

    Asymptotic Dynamical States in Networks of Kuramoto Oscillators with Inertia

    Get PDF
    Das Kuramoto-Modell mit Trägheit ist ein bekanntes und einfaches Modell für die Frequenzdynamik in Stromnetzen. Es wurde häufig genutzt um die Stabilität und Dynamik des Systems nahe dem vollständig synchronisierten Zustand zu untersuchen. Mit steigenden Anteil erneuerbarer Energiequellen und der damit verbundenen verminderten Schwungmasse im System werden Stromnetze jedoch anfälliger für das Auftreten unerwünschter dynamischer Zustände und großer Frequenzschwankungen. Das Ziel dieser Arbeit ist es, das dynamische Modell aus der Perspektive der nichtlinearen Dynamik zu untersuchen und die verschiedenen asymptotischen dynamischen Zustände neben synchronen Fixpunkt zu analysisieren. Es werden analytische und numerische Bedingungen für die Existenz solitärer Zustände einzelner Knoten sowie für die Koexistenz synchronisierter Cluster hergeleitet.The Kuramoto model with inertia is a popular and straightforward model of the frequency dynamics in power grids. It has been widely used to study the stability and dynamics close to the global synchronous state. However, with an increasing share of renewable energies and the resulting decline of total system inertia the power system becomes more vulnerable to the emergence of undesirable dynamical states and large frequency deviations. The goal of this thesis is to approach this model from a viewpoint of nonlinear dynamics and analyze the different possible asymptotic dynamical states beside the synchronous fixed point. Analytical and numerical conditions for the existence of solitary states of single nodes as well as for coexisting synchronous clusters are derived
    corecore