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Abstract

The Kuramoto model with inertia is a popular and straightforward model of the
frequency dynamics in power grids. It has been widely used to study the stability
and dynamics close to the global synchronous state. However, with an increasing
share of renewable energies and the resulting decline of total system inertia the
power system becomes more vulnerable to the emergence of undesirable dynamical
states and large frequency deviations. The goal of this thesis is to approach this
model from a viewpoint of nonlinear dynamics and analyze the different possible
asymptotic dynamical states beside the synchronous fixed point. Analytical and
numerical conditions for the existence of solitary states of single nodes as well as for
coexisting synchronous clusters are derived.
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It is by logic that we prove,
but by intuition that we discover.

– HENRI POINCARÉ [26]



Chapter 1

Motivation

The transition of the power system towards higher shares of renewable energy gives
rise to major challenges regarding the dynamical stability and control of power grids.
In grids with large numbers of conventional power plants frequency dynamics is sta-
bilized by the rotating masses of the turbines providing kinetic energy. However, the
increasing use of power electronic interfaced power sources like wind and solar leads
to a reduction of conventional synchronous machines in the grid. This decrease of
total system inertia reduces the dynamical stability and results in larger frequency
gradients. This is already significantly affecting islanded power grids, notably in
Ireland and Northern Ireland as well as in Great Britain. For that reason, there has
been an upper limit of 50 % for the operation of power electronic interfaced power
sources in the grid of Ireland. [5, 6]

Other challenges for operating power grids with high share of renewables are the
intermittency of wind and solar power as well as the uneven geographical distri-
bution of energy production and consumption, resulting in large exports of power
from one area to another. During periods of strong winds there are for instance
large power flows from Denmark and North Germany to Southern Europe. Under
such circumstances there is an increased risk of transmission line overloads and the
emergence of blackouts in the power system. Transmission system operators there-
fore apply the so-called N-1 criterion which guarantees that in case of a intended
shut down or failure of an element the remaining elements in the grid are capable of
coping the new operational situation without violating operational security limits.
For the necessary calculations grid operators usually use static power flow equations
that do not take the dynamics of the system into account. However, the reduction
in total systems inertia and large power imbalances among different areas of the
transmission grid gives rise to undesirable dynamical phenomena.

In particular, those power imbalances can trigger so-called inter-area oscillations
where the synchronous machines in one area are oscillating against the machines in
another. These oscillations are characterized by relatively low frequencies and small
damping and are therefore difficult to control [28]. In case of large disturbances
a power system may get into certain dynamical regimes where it does not return
to the synchronous operation state but rather approaches certain non-synchronous
oscillating states. Large uncontrolled oscillations in the power system are a severe
threat for the grid stability and may cause large scale blackouts.
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An example of such an incident is in the major disturbance in Western North
American grid on August 10th in 1996 leading to a widespread outage of genera-
tion affecting about 7.5 million customers. Prior to the collapse there were large
exports from the Pacific Northwest into California and from Canada into the Pa-
cific Northwest and several 500 kV lines in Oregon short-circuited on trees. As a
result, 13 hydro generating units operated by the power administration were re-
moved from the grid by system protection relays followed by the beginning of an
0.224 Hz oscillation on the transmission system. At a certain point this oscillation
became negatively damped and the growing amplitude reached a level were major
interconnection lines failed and the grid was split into four unconnected islands. [23]

It is evident that analyzing the stability of the synchronous operating state as
well as of undesirable dynamical states is of great importance. From the viewpoint of
nonlinear dynamics the power system is a highly multi-stable system with a variety
of different asymptotic states. The goal of this thesis is to identify such states and
determine the conditions under which those are stable. The thesis is structured as
follows: In Chapter 2 the common approach for modeling power grids as networks
of oscillators is introduced. Chapter 3 deals with the stability of the synchronous
state corresponding to the normal state of operation in power grids. In Chapter 4
some fundamental insights of the theory of linear periodic systems that will be used
in the remaining chapters are outlined. Chapter 5 deals with the stability of the
limit cycle state in the infinite bus model. In Chapter 6 a linearization approach for
determining the stability of coexisting synchronized clusters with distinct frequency
is introduced. A new limit cycle state for a certain class of nodes in the oscillator
network is presented in Chapter 7. Finally, in Chapter 8 the results are summed up
and suggestions for further research are given.



Chapter 2

Modeling Power Grids as
Networks of Oscillators

Power grids are highly complex systems with nonlinear dynamics, a high dimen-
sionality as well as a complicated network connectivity. The development of an
appropriate model for such a system is therefore a great challenge. In recent years,
there has been an increasing interest in the dynamics of power grids from the per-
spective of complex networks science [8, 17, 19, 21, 24, 31]. In this framework, the
power grid is modeled as a network of nonlinear oscillators. This holistic approach
allows for the detailed modeling of the dynamics of the whole grid with all its single
components and their mutual interactions instead of an analysis restricted to single
components. A central focus of the network theoretic approach lies on the influence
of the network structure on the dynamics.

2.1 The Graph Representation of the Grid
Complex networks can be represented by graphs G = (N ,M), where N is a set of
nodes and M is a set of links connecting pairs of nodes. Links are defined by the
couple of nodes i and j they are connecting. They are also said to be incident to
these nodes. We define n to be the total number of nodes and m to be the total
number of links in the network. The nodes which are connected to a node i by a
link are called adjacent nodes of i. A walk from node i to node j is an alternating
sequence of adjacent nodes (or a sequence of nodes and links) that begins with i
and ends with j. A cycle is a closed walk, of at least three nodes, in which no link
is repeated. A path is a walk in which no node is visited more than once. The path
of minimal length between two nodes is known as the shortest path dij. A subgraph
G ′ = (N ′,M′) is a graph with N ′ ⊆ N and M′ ⊆ M. Subgraphs in which every
pair of nodes is connected by a path will be denoted as clusters C. A cluster is called
component of the graph if it is maximal, i.e. there exists no path between a node
i ∈ C and any node j /∈ C. If a graph consists of exactly one component, it is said
to be connected. A graph is called a tree if it is connected and has no cycles. [3, 20]

3
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2.1.1 Adjacency and Incidence Matrix
Graphs can be represented by matrices. The adjacency matrix is a n × n-matrix
containing the information which pairs of nodes are connected.

Aij =

1 if i and j are connected,
0 otherwise.

(2.1)

It can be used to calculate various global and local measures of the network structure.
The degree of a node for example, is defined as the number other nodes it is connected
to and can be calculated by

ki =
n∑
j=1

Aij. (2.2)

For many real world networks and in particular for power grids, the links in the
network are not identical. Depending on the the situation it might therefore be
useful to introduce link weights wij. In the following, we assume these weights to
be nonnegative and symmetric

wij = wji ≥ 0. (2.3)

Then, we can define a weighted adjacency matrix

Aij =

wij if i and j are connected,
0 otherwise.

(2.4)

Another representation of a graph is given by the incidence matrix. This is a
m×n-matrix containing the information which links e = (i, j) are incident to which
nodes

Bev =


+1 if v = i,
−1 if v = j,
0 otherwise.

(2.5)

2.1.2 The Graph Laplacian
The Laplacian of a graph is a n× n-matrix which is defined by

L = D − A, (2.6)

where D = diag(k1, .., kn) is the diagonal matrix with the node degrees on the
diagonal. The single elements of L are thus given by

Lij = δij
n∑
l=1

Ail − Aij, (2.7)

where δij is the Kronecker delta. An alternative way of calculating the Laplacian is
the factorization into the incidence matrix and its transpose.

L = BTB (2.8)

That this statement is true, will be shown in the following. When i = j,

[BTB]ij =
m∑
e=1

B2
ei = ki. (2.9)
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Hence the diagonal elements of BTB are equal to the degrees of the nodes. When
i 6= j and i and j are not connected,

[BTB]ij =
m∑
e=1

BeiBej = 0, (2.10)

since every link is non-incident to at least one of the nodes. On the other hand,
when i 6= j and there exists a link between those to nodes,

[BTB]ij =
m∑
e=1

BeiBej = −1. (2.11)

It can easily be seen, that the equations (2.9)-(2.11) are equivalent to the definition
of the Laplacian 2.6 and thus the factorization in (2.8) holds.

By definition the Laplacian is symmetric and therefore all its eigenvalues are
real. Further, it can be shown that it is positive semidefinite and therefore all eigen-
values are nonnegative. These statements are also true for a weighted Laplacian if
we assume the weights to be nonnegative and symmetric (2.3).

A real matrix is said to be positive semidefinite, if xTMx ≥ 0 for all real and
nonzero vectors x. This can easily be proved for the Laplacian by making use of the
factorization (2.8)

xTLx = xTBTBx = (Bx)T (Bx) ≥ 0. (2.12)

We define the vector v(1) = (1, ..., 1)T . From definition (2.7) follows directly that

[Lv(1)]i =
n∑
j=1

Lij = 0. (2.13)

Therefore, v(1) is always an eigenvector of L with the corresponding eigenvalue
λ1 = 0.

Assume G and H are two graphs on the same node set with disjoint edge sets.
Then, the adjacency matrix of the union of both graphs obviously fulfills AG∪H =
AG + AH and therefore by (2.7) additivity also holds for the Laplacian

LG∪H = LG + LH. (2.14)

If we assume, that the node sets of G and H are also disjoint, then the union graph
is unconnected and it can easily be seen that

LG∪H =
(
LG 0
0 LH

)
. (2.15)

If LG has the eigenvectors v(i) with eigenvalues λi and LH has the eigenvectors w(i)

with eigenvalues µi then (
LG 0
0 LH

)(
v(i)

0

)
=
(
λiv

(i)

0

)
(2.16)
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and similarly (
LG 0
0 LH

)(
0
w(i)

)
=
(

0
µiw

(i)

)
. (2.17)

Hence, the eigenvectors of the union graph are given by (v(i), 0, ..., 0)T and (0, ..., 0,w(i))T
with the corresponding eigenvalues λi and µi. From this follows, that the number
of zero eigenvalues of the Laplacian is at least the number of disjoint subgraphs.
In fact, the dimension of the null space of L is exactly the number of connected
components which will be shown in the following. For this purpose, we introduce
the Laplacian of a single link

[Le]ij =


1 if i = j

−1 if e is the link connecting i and j
0 otherwise.

(2.18)

Equation (2.14) implies that L = ∑m
e=1 Le. If the graph is connected and x is a

vector in the null space of L, i.e. Lx = 0 we get

0 = xTLx =
m∑
e=1
xTLex =

n∑
i,j=1

Aij(xi − xj)2. (2.19)

Thus, xi = xj for all connected nodes i and j. This means that all xj are equal
and every vector in the null space is a multiple of v(1) = (1, ..., 1)T . For a connected
graph the null space is therefore of dimension one and thus

λ2 > 0. (2.20)

In fact, λ2 is an important measure for the network structure known as the algebraic
connectivity.

2.1.3 Complex Network Measures
The structural properties of a complex network can be characterized by certain local
and global network measures [3, 20]. One important example of a local measure is
the degree of a node which was already introduced in (2.2). A corresponding global
measure is the mean degree

〈k〉 = 1
n

n∑
i=1

ki = 2m
n
, (2.21)

which is proportional to the number of links m since the addition of a link incre-
ments the degree of two different nodes by one. The mean degree is therefore a
measure for the link density of a network. However, this measure does not contain
any information about the variance of degrees in a network. We define the degree
distribution P (k) as the probability distribution of degrees, i.e. the probability that
a randomly chosen node has degree k is given by P (k). This distribution is often
very suitable for characterizing the structural properties of a graph. For random
graphs where every pair of nodes is connected by a link with probability p the de-
gree distribution is given by a binomial distribution [7]. On the other hand, the
distribution of so-called scale-free networks follow a power law. Such networks are
characterized by having a few nodes with very high degree (so-called hubs) [1].
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Another important local measure is the clustering coefficient ci that can be de-
fined as the probability that two neighbors of a node are connected by a link

ci =
∑n
j,k=1 AijAjkAki

ki(ki − 1) . (2.22)

The global clustering coefficient can be defined as the average of the local clustering
coefficients and is related to the number of triangles in the network. Although
clustering coefficients are mostly considered in the context of social networks they
can also be of particular importance for the resilience of supply networks, since two
nodes that are part of a triangle are still connected by a path of length dij = 2
in case of a failure of the link connecting those two nodes [25]. Shortest paths
between pairs of nodes play an important role for the characterization of a network.
The characteristic path length of a network is defined as the average shortest path
length considering all pairs of nodes

L =
∑n
i,j=1 dij

n(n− 1) . (2.23)

Networks having both a large clustering coefficient and a short characteristic path
length are known as ’small-world’ networks [32].

2.1.4 Structural Properties of Power Grid Networks
Power grids typically have a very hierarchical structure. They are divided into sev-
eral voltage levels that are characterized by different structural properties. While
distribution grids (mid and low voltage level) are mostly characterized by tree-like
structures, transmission grids (high voltage level) tend to have a more meshed net-
work structure. The detailed structural properties of transmission grids of various
sizes have been investigated using complex network analysis and statistical graph
theory. This analysis was done with both real world topologies and synthetic grids
(mostly IEEE bus systems) [24].

It turns out that transmission grids have a relatively sparse network structure
with an average degree between 2 ≤ 〈k〉 ≤ 4. The degree distributions mostly follow
an exponential distribution with specific parameters depending on the particular
grid. The average path lengths are similar to those of random graphs of similar size
while the clustering coefficients are typically higher but only for a few samples much
higher than those of random graphs. Transmission grids are therefore not in general
fulfilling the small-world property.

When studying the dynamics of power grids it is essential to use realistic network
models having the same structural properties as real power grid topologies. For this
purpose, we can for instance use simplified network models of real world power grids
as well as synthetic benchmark grids like the IEEE test cases. However, in order
to get a comprehensive understanding of the broad range of possible dynamical
phenomena independent of a specific grid structure it is often useful to perform
statistical analyses of large ensembles of network models with similar structural
properties. For this purpose, a network growth model generating spatially embedded
graphs with realistic topologies has been developed [30] recently. The model contains
an initialization phase establishing a minimum spanning tree between a given set
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of nodes and a growth phase extending the network by placing nodes at random
and connecting them to the existing grid according to a heuristic cost/redundancy
optimization. The parameters determining the growth phase can be chosen such
that the mean degree and the degree distribution of the resulting network exactly
fits those of realistic power grid topologies.

Figure 2.1: A spatially embedded network with n = 100 nodes and a topological
structure similar to real world transmission grids. The graph was generated with
the random growth model proposed in [30].

2.2 The Swing Equation
The synchronization of coupled nonlinear oscillators is a phenomenon that appears
in many physical, biological and chemical systems. The most famous model for
studying such systems is the celebrated Kuramoto model that assumes an infinite
number of oscillators having their own frequencies being coupled by a sinusoidal
function and a coupling constant [14, 27]. It turns out that frequency dynamics of
power grids can be modeled by a second order model with a Kuramoto-like structure
known as the Kuramoto model with inertia [8]. In the engineering literature this is
known as the classical model or the swing equation [15]. It is used for analyzing the
transient short time behavior of generators in a power grid, the so-called first swing.

2.2.1 Nonlinear Power Flow Equations
In this section we are going to derive the AC power flow equations in a transmission
grid. Every line in the grid is characterized by its impedance zij = rij + ixij, where
rij is the resistance and xij the reactance. The inverse of the impedance is called
admittance yij = z−1

ij , that can be written as yij = gij + ibij with the conductance
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gij and the susceptance bij that are given by

gij = rij
|zij|2

(2.24)

bij = − xij
|zij|2

. (2.25)

When we define the admittance between two unconnected nodes as yij = 0, we can
interpret yij as elements of a weighted adjacency matrix of the power network as
defined in Section 2.1.1. The current flowing on a line is given by Ohm’s law

Iij = yij(Vi − Vj). (2.26)

The net current injection at a node can then be calculated by using Kirchhoff’s first
law

Ii =
n∑
j=1

Iij =
n∑
j=1

yij(Vi − Vj) = Vi
n∑
l=1

yil −
n∑
j=1

yijVj (2.27)

=
n∑
j=1

δijVj
n∑
l=1

yil −
n∑
j=1

yijVj =
n∑
j=1

(δij
n∑
l=1

yil − yij)Vj. (2.28)

We can then define a nodal admittance matrix by

Yij = Gij + iBij = δij
n∑
l=1

yil − yij. (2.29)

This matrix is basically a weighted Laplacian. With this, equation (2.28) can be
written as

I = Y V. (2.30)

The complex voltage at node i is given by

Vi = |Vi|eiφi . (2.31)

The complex power [9] can thus be calculated by

Pi + iQi = Vi · I∗i = Vi
∑
j

Y ∗ijV
∗
j =

∑
j

|Vi||Vj|(Gij − iBij)ei(φi−φj), (2.32)

with the real and reactive powers

Pi =
n∑
j=1
|Vi||Vj| (Gij cos(φi − φj) + Bij sin(φi − φj)) (2.33)

Qi =
n∑
j=1
|Vi||Vj| (Gij sin(φi − φj)− Bij cos(φi − φj)) . (2.34)

In high voltage transmission grids, the line resistance can be neglected rij ≈ 0 and
thus, the conductance is gij ≈ 0 and the susceptance becomes bij ≈ −x−1

ij . The
nodal suceptance matrix is then given by

Bij = −δij
n∑
l=1

x−1
il + x−1

ij , (2.35)
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and equation (2.33) reduces to

Pi =
n∑
j=1

|Vi||Vj|
xij

sin(φi − φj). (2.36)

The power flow on a single line is therefore determined by the line reactance, voltage
magnitude of the two nodes as well as the phase difference of the voltage angles

Fij = |Vi||Vj|
xij

sin(φi − φj). (2.37)

2.2.2 Dynamics of Synchronous Machines
Each generator i coupled to a grid is described by a power balance equation of the
form

P source
i = P acc

i + P diss
i + P trans

i , (2.38)
where P source

i is the rate at which energy is fed into the generator. This energy is
either accumulated as kinetic energy in the turbine P acc

i , dissipated P diss
i or trans-

mitted into the grid P trans
i . The change rate of kinetic energy is given by

P acc
i = d

dt

(1
2Ji(ω

gen
i )2

)
= Jiω

gen
i ω̇geni , (2.39)

where Ji is the turbines total moment of inertia. The frequency of the generators
turbine is close to the standard frequency Ω of the power system (either 50 or 60
Hz)

ωgeni (t) = Ω + ωi(t) (2.40)
We therefore assume ω(t)� Ω whereby (2.39) can be approximated as

P acc
i ≈ JiΩω̇i. (2.41)

The dissipation is proportional to the frequency deviation

P diss
i = Diωi, (2.42)

and the transmission is given by the nonlinear power flow as derived in the previous
chapter

P trans
i =

n∑
j=1

|Vi||Vj|
xij

sin(φi − φj). (2.43)

Inserting (2.41), (2.42) and (2.43) into (2.38) yields

JiΩω̇i = P source
i −Diωi −

n∑
j=1

|Vi||Vj|
xij

sin(φi − φj). (2.44)

The change rate of the phase angle φi is given by the rotation frequency ω and thus,
in normalized units we finally get

φ̇i = ωi (2.45)

ω̇i = Pi − αiωi −
n∑
j=1

Kij sin(φi − φj), (2.46)
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with Pi = P source
i /(JiΩ), αi = Di/(JiΩ) andKij = |Vi||Vj|/(xijJiΩ). Equations (3.1)

and (3.2) are known as the swing equation or the Kuramoto model with inertia.

As mentioned in the beginning of the chapter, the swing equation is a second
order model for the dynamics of the generator phase angles and frequencies omit-
ting the dynamics of other variables such as voltages. Since the voltage dynamics
in power grids is generally much slower than the frequency dynamics, the swing
equation is an appropriate model for short timescales. However, it is far from clear
that it shows the same asymptotic behavior compared to more realistic higher order
models of synchronous machines. In a comparison between the swing equation and a
fourth order model including voltage dynamics it has been shown that both models
typically follow a similar trajectory [2]. Nevertheless, it turned out that there might
exist a number of fixed points that are stable in second order but unstable in the
fourth order model. Together with the slow voltage dynamics this has the effect
that the trajectories of the fourth order model sometimes show a pseudo convergent
behavior towards such fixed points until the voltage dynamics drives the system
away into a different transient regime.



Chapter 3

Stability of the Synchronous State

In this chapter we want to analyze the global synchronous state of the swing equa-
tion where all oscillators in the network are rotating with the same frequency Ω.
This state corresponds to the operating state of a power grid were all generators are
synchronized with a frequency of typically either 50 or 60 Hz. Therefore, this state
and its linear stability and dynamics has been well studied in the engineering litera-
ture. Recently, probabilistic measures have been proposed to assess the asymptotic
and transient stability of the synchronous state against large perturbations.

3.1 Global Frequency Synchronization
The global synchronization of the swing equation

φ̇i = ωi (3.1)

ω̇i = Pi − αωi −
n∑
j=1

Kij sin(φi − φj), (3.2)

corresponds to the stationary state where all oscillators are rotating with the same
constant frequency ωi = Ω. By integration of (3.1) we get the phases

φi = Ωt+ φ∗i , (3.3)

where φ∗i are constant phase shifts. From (3.2) follows that these phase shifts are
constrained by the nonlinear equation system

0 = Pi − αΩ−
n∑
j=1

Kij sin(φ∗i − φ∗j). (3.4)

When summing (3.4) over all i, the sum over the sines of the phase differences
vanishes since the sine is an odd function and we get

0 =
n∑
i=1

Pi −
n∑
j=1

αΩ (3.5)

and thus the global frequency is given by

Ω =
∑n
j=1 Pi

nα
. (3.6)

12
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3.2 Reference Frames and Symmetries
When the phase angles φi of the oscillators are measured relative to a certain refer-
ence angle φr

φ′i = φi − φr, (3.7)

the swing equation (3.1) and (3.2) remains unchanged. This implies, that there is
a rotational symmetry of the system that reduces the dimension of the dynamical
system by one. Here we assumed, that the network is connected, i.e. there exists
only one component. In general, the number of rotational symmetries is equal to
the number of components of the network since for every component we can choose
an arbitrary reference angle without changing the dynamics of the system.

Similarly, we can measure the frequencies ωi relative to a reference frequency ωr

ω′i = ωi − ωr (3.8)
φ′i = φi − ωrt. (3.9)

Inserting this into (3.2) yields

ω̇′i = Pi − ωr − αω′i −
n∑
j=1

Kij sin(φ′i − φ′j). (3.10)

Thus, by scaling the power feed-in as

P ′i = Pi − αωr, (3.11)

the structure of the swing equation remains unchanged.

A special case is the so called co-rotation frame, were the frequency of the global
synchronous state is chosen as the reference frequency ωr = Ω. Using (3.6), the
power feed-ins are then given by

P ′i = Pi −
1
n

n∑
j=1

Pj. (3.12)

Consequently, in the co-rotating frame the network is always power-balanced, i.e.∑n
j=1 P

′
i = 0.

Finally, we want to analyze the dynamics of the mean frequency

〈ω〉 = 1
n

n∑
i

ωi. (3.13)

Averaging the swing equation (3.2) over all oscillators yields

〈ω̇〉 = −α〈ω〉 (3.14)

and thus, after any perturbation the mean frequency decays exponentially

〈ω(t)〉 = 〈ω(0)〉e−αt. (3.15)
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3.3 Linear Stability
In this section we want to analyze the dynamics of the swing equation close to the
global synchronous state of the system. Therefore, we write the phase as

φi(t) = φ∗i + δφi, (3.16)

where φ∗i are the solutions of the power flow equations

Pi =
N∑
j=1

Kij sin(φ∗i − φ∗j) (3.17)

for the synchronous state and δφi � 1 are small deviations. Here, we assume that
we are in the co-rotating frame such that the global frequency ωglobal = 0 and thus
δφ̇i = ωi. With this ansatz, we can linearize the sine function in (3.2) and get

ω̇i = −αωi −
N∑
j=1

Kij cos(φ∗i − φ∗j)(δφi − δφj) (3.18)

We can define a dynamical Laplacian

Lij = −δij
N∑
l=1

Kil cos(φ∗i − φ∗l ) +Kij cos(φ∗i − φ∗j), (3.19)

that is basically a negative Laplacian of the network structure, with coupling strengths
weighted by the cosine of the phase angle differences in the synchronous state. With
this matrix, equation (3.18) can be written as

δω̇i = −αωi +
N∑
j=1

Lijδφj. (3.20)

If we define δφ = (δφ1, ..., δφN)T and ω = (ω1, ..., ωN)T , the whole linearized dy-
namical system can be written as(

δφ̇
ω̇

)
=
(

0 1
L −α1

)(
δφ
ω

)
. (3.21)

Thus, we have a 2N -dimensional first order differential equation system of the form

ẋ(t) = Ax, (3.22)

where
A =

(
0 1
L −α1

)
(3.23)

is the Jacobian matrix. The general solution of (3.22) is

x(t) = eAtx(0), (3.24)

where eAt is a matrix exponential. The dynamics of the system is thus determined
by the eigenvalues σi and eigenvectors w(i) of the Jacobian. These are closely related
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to the eigenvalues and eigenvectors of the Laplacian defined in (3.19) as is shown in
the following.

A ·w =
(

0 1
L −α1

)(
v
u

)
=
(

u
L · v − αu

)
= σ

(
v
u

)
(3.25)

From this we get

u = σv (3.26)
L · v = σ(α + σ)v, (3.27)

and thus, v is an eigenvector of the Laplacian. If we denote the corresponding eigen-
value by λ, the eigenvalues of the Jacobian are solutions to the quadratic equation

σ2 + ασ − λ = 0. (3.28)

and hence given by

σ± = −α2 ±
√
α2

4 + λ. (3.29)

Since the Laplacian always has a zero eigenvalue, the Jacobian always has two
real eigenvalues σ1 = 0 and σ2 = −α corresponding to the eigenvectors w =
(1, ..., 0, ...)T and w = (1, ...,−α, ...)T . The eigenvalue λ1 reflects the rotational
symmetry of a homogeneous constant phase shift discussed in the previous section.
The second eigenvalue corresponds to a a homogeneous shift in the frequencies that
leaves the power flow unaffected and decays exponentially.

When all phase angle difference between adjacent nodes fulfill |φ∗i − φ∗j | < π/2,
the Laplacian has only non-positive eigenvalues. In that case, the eigenvalues of
the Jacobian all have negative real parts and the synchronous fixed point is linear
stable. Laplacian eigenvalues with |λ| > α2/4 have an imaginary part and corre-
spond to damped oscillating modes. On the other hand, eigenvalues with |λ| < α2/4
correspond to overdamped and therefore slowly declining modes.

3.4 Stability against Large Perturbations
In the previous section we analyzed the linear stability of the synchronous state cor-
responding to small perturbations of that state. The stability against large pertur-
bations is usually assessed by using Lyapunov functions. However, for multi-stable
systems having a large number of degrees of freedom and possibly complicated dy-
namics, such functions are usually hard to find. Therefore, an alternative approach
for determining the stability against large perturbations by using probabilistic mea-
sures has been developed recently. Two examples of such measures are basin stability
B measuring the fraction of initial states for which the trajectories approach a desir-
able asymptotic state [18] and survivability S measuring the fraction of initial states
for which the trajectories stay inside a desirable region of the phase space [12]. Basin
stability and survivability are rather complementary measures, the former focusing
on the asymptotic and the latter on the transient behavior of the dynamics.

In case of a power grid the desirable attracting state would be the synchronous
fixed point and the desirable region could for example be confined by certain fre-
quency bounds. The two measures can then be interpreted as the probabilities that
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the system returns to the stable fixed point respectively stays within the predefined
frequency bounds after a random perturbation. The advantage of such a probabilis-
tic definition of stability measures is that they can be easily computed using Monte
Carlo sampling methods. This is done by numerical integrations of the system for
an ensemble of randomly chosen initial conditions and an evaluation whether the
resulting trajectories return to the stable fixed point respectively stay inside the
predefined frequency boundaries. The estimation of basin stability and survivability
can thus be computed by Bernoulli trials. For a sample size of N trials the standard
error is given by

SEM =
√
p(1− p)

N
, (3.30)

were p is the estimate of either the basin stability B or the survivability S.

3.4.1 Basin Stability
The idea of the basin stability concept is to relate the stability of a desirable at-
tractive state to the volume of the basin of attraction in the phase space X of the
dynamical system. In a power grid the desired state corresponds to the stable fixed
point X∗ ⊂ X of global synchronization (Ω = 0 in the co-rotating frame)

X∗ = {(φ∗1, ..., φ∗N , 0, ..., 0)}. (3.31)

The basin of attraction XB ⊆ X of the state X∗ ⊆ XB is given by all initial states
from which the system asymptotically converges towards X∗

XB = {x(0) ∈ X | lim
t→∞

x(t) ∈ X∗}. (3.32)

Given the probability measure µ of initial conditions that can be interpreted as a
probability distribution of possible perturbations, the basin stability is defined as

Bµ = µ(XB). (3.33)

Assuming a uniform distribution of initial conditions in a subset X0 ⊂ X, the
measure µ is proportional to the volume and the basin stability is then given by the
ratio

B = Vol(XB ∩X0)
Vol(X0) . (3.34)

In case of networked systems like power grids, it is useful to define a single node basin
stability Bi for studying localized perturbations of a single node in the network. This
can be achieved by drawing the initial conditions from X0 ⊂ Xi, where Xi ⊂ X
is the subset of the phase space spanned by the the variables corresponding to node i.

Using the single node basin stability estimate it was possible to relate the sta-
bility of the synchronous state against large local perturbations to certain local
network structures [17, 29]. The nodes can basically be categorized into three differ-
ent classes: nodes with poor stability (Si < 0.3), with fair stability (0.3 ≤ Si ≤ 0.95)
and with high stability (Si > 0.95). The majority of nodes has a fair value of basin
stability. A perturbation of these nodes can induce only one sort of non-synchronous
asymptotic state: the affected node becomes strongly desynchronized and oscillates
about its natural frequency whereas all other nodes remain almost synchronous.
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For nodes with high values of basin stability this desynchronized state is not asymp-
totically stable. On the other hand, for nodes with poor values of basin stability
there exist more than one stable non-synchronous state. It turns out, that this
particularly applies to nodes that are connected to nodes of degree one or tree-like
appendices (dead ends and dead trees) [17]. Perturbations that hit such a node can
induce multiple asymptotic states where one or several nodes in the tree structure
become desynchronized. In contrast, so-called detour nodes (nodes of degree k = 2
that are part of a triangle) always have at least fair values of basin stability, i.e. a
perturbation of such a node almost never induces a non-synchronous state where a
node other than the perturbed one becomes desynchronized [29].

Figure 3.1: Distribution of single node basin stabilities for a network generated with
the random growth model for power grids [30]. The dashed lines delimit the classes
of poor (14%), fair (79%) and high (7%) basin stability. (Figure by Schultz et al. (2014)
[29] / CC BY 3.0)

3.4.2 Survivability
The definition of the survivability strongly depends on the choice of the desirable
region X+ ⊆ X in the phase space X. For the frequency dynamics of a power grid
where the state of every synchronous machine is determined by a phase angle φi and
a frequency ωi the desirable region can be defined as the set of states where all devi-
ations of the individual frequencies ωi from the global frequency of the synchronous
state (Ω = 0 in the co-rotating frame) are smaller than a certain maximally tolerable
deviation ω+ > 0

X+ = {(φ1, ..., φN , ω1, ..., ωN) | |ωi| ≤ ω+∀i}. (3.35)

The finite-time basin of survival XS
t ⊆ X+ is defined as the set of initial conditions

x(0) ∈ X for which the entire trajectory x(t′) over the time interval [0, t] lies in X+

XS
t = {x(0) ∈ X | x(t′) ∈ X+∀0 ≤ t′ ≤ t}. (3.36)

The infinite-time basin of survival is obtained by taking the limit XS = limt→∞X
S
t .

Given the probability measure µ of initial conditions, the survivability is defined as

Sµ = µ(XS). (3.37)
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Again, assuming a uniform distribution of initial conditions in a subset X0 ⊂ X,
the measure µ is proportional to the volume and the survivability is given by the
ratio

S = Vol(XS ∩X0)
Vol(X0) . (3.38)

Similar to the single node basin stability we can define a single node survivability
Si by drawing the initial conditions from X0 ⊂ Xi. Note that although the per-
turbation is local the violation of the frequency constraint by any arbitrary node is
counted as not survived.

The single node survivability is strongly related to the degree of the perturbed
node as well as to the degree of its neighbors. With a simple classification of the
nodes based on these two measures the strong dependence of the transient behavior
on the local network structure has been shown [22]. Generally, nodes with high
degree have a significantly lower survivability. For nodes with degree one that are
coupled to a high degree node even a new type of asymptotic has been observed.
The properties of that novel state will be analyzed in Chapter 7.

Figure 3.2: Phase space of the damped pendulum with torque. Areas in green, blue
and yellow mark the basin of attraction of the fixed point. The desirable frequency
band is colored in red, yellow and green. The infinite-time basin of survival is given
by the green area. Trajectories starting in the yellow region converge towards the
fixed point but their transients leaves the desirable region. (Figure by Nitzbon et al.
(2017) [22] / CC BY 3.0)



Chapter 4

Theory of Linear Time-Varying
Systems

The stability of fixed points in a nonlinear system can be determined by linearizing
the equations around the fixed point. Since fixed point solutions by definition do
not depend on time, this leads to a linear system with constant coefficients. The
stability of such systems can be obtained by evaluating the eigenvalue spectrum.
When analyzing the stability of limit cycles, a similar approach can be made by
linearizing the system around the periodic solution. However, in this case we end
up with a linear but periodically time dependent system. Determining the stability
of such systems is much more difficult. In this chapter, we will introduce some
essential theorems of the theory of linear periodic systems that will be helpful in the
subsequent chapters.

4.1 Stability of Linear Systems
At first, we will analyze the stability of general linear time-varying systems of the
form

ẋ = A(t)x. (4.1)
This section is in a large part based on Chapter 3 of Hale’s Ordinary Differential
Equations [11].

An n × n-matrix X(t) is said to be a matrix solution of (4.1) if each column
satisfies (4.1). X(t) is called a fundamental matrix solution if its columns are linear
independent, i.e. det(X(t)) 6= 0. If X(t) is any fundamental matrix solution of
(4.1), then a general solution of (4.1) is X(t)c where c is an arbitrary n-dimensional
vector.

4.1.1 Homogeneous Linear Systems
Consider an ordinary differential equation ẋ = f(x, t) having a fixed point x = 0,
i.e. f(0, t) = 0 for t ∈ [0,∞).

1. The fixed point is called Lyapunov stable if for any ε > 0 and any t0 ≥ 0 there
is a δ = δ(t0, ε), such that |x(t0)| < δ implies |x(t, t0, x(t0))| < ε for t ∈ [t0,∞).

2. The fixed point is called uniformly stable if it is Lyapunov stable and δ can be
chosen independent of t0.

19
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3. The fixed point is called asymptotically stable if it is Lyapunov stable and there
exists a δ = δ(t0) such that x(t0) < δ implies |x(t)| → 0 as t→∞.

4. The fixed point is called uniformly asymptotically stable if it is uniformly
stable, δ in the definition of asymptotic stability can be chosen indepen-
dent of t0 and for every ε there is a T (ε) > 0 such that x(t0) < δ implies
|x(t, t0, x(t0))| < ε if t ≥ t0 + T (ε).

5. The fixed point is called unstable if it is not Lyapunov stable.

For linear systems of the form (4.1) we can derive conditions for stability.

Theorem 4.1.1. Let X(t) be a fundamental matrix solution of (4.1) and let β be
any number in (−∞,∞). The system (4.1) is

1. Lyapunov stable for any t0 in (−∞,∞) if and only if there is a K = K(t0) > 0
such that

|X(t)| ≤ K, for all t0 ≤ t <∞; (4.2)

2. uniformly stable for t0 ≥ β if and only if there is a K = K(β) > 0 such that

|X(t)X−1(s)| ≤ K, for all t0 ≤ s ≤ t <∞; (4.3)

3. asymptotically stable for any t0 in (−∞,∞) if and only if

|X(t)| → 0 as t→∞; (4.4)

4. uniformly asymptotically stable for t0 ≥ β if and only if it is exponentially
stable, i.e. there are K = K(β) > 0 and η = η(β) > 0 such that

|X(t)X−1(s)| ≤ Ke−η(t−s), for all t0 ≤ s ≤ t <∞. (4.5)

Proof. See [11, p. 84–85].

A special case of (4.1) are linear systems with constant coefficients

ẋ = Ax. (4.6)

For such systems the stability depends only on the eigenvalues of the matrix A.

Theorem 4.1.2. A necessary and sufficient condition for the system (4.6) to be
asymptotically stable is that all eigenvalues of A have negative real parts. If this is
the case, there exist positive constants K, η such that

|eAt| ≤ Ke−ηt, for all t ≤ 0. (4.7)

Proof. See [11, p. 100].
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4.1.2 Perturbed Linear Systems
In this section we want to study non-homogeneous non-autonomous systems of the
form

ẋ = A(t)x+ f(x, t), (4.8)

where f(x, t) can be regarded as a perturbation of the homogeneous linear system
(4.1).

Theorem 4.1.3. If X(t) is a fundamental matrix solution of (4.1) then every so-
lution of (4.8) is given by

x(t) = X(t)X−1(t0)x(t0) +
∫ t

t0
X(t)X−1(s)f(x(s), s)ds, (4.9)

for any real number t0 ∈ (−∞,∞).

Proof. See [11, p. 81] and [4, p. 156].

Equation (4.9) is known as the variation of parameters formula. Using this
formula we can derive conditions for the stability of (4.8). We will consider two
separate cases:

1. Perturbation of the form f(x, t) = B(t)x, where B(t) is a n × n continuous
matrix function.

2. Bounded perturbations f(x, t) = f(t), i.e. with |f(t)| < C.

In the first case, equation (4.8) takes the form

ẋ = [A(t) + B(t)]x. (4.10)

For the proof of the following theorem, we will need Grönwalls Inequality.

Lemma 4.1.1 (Grönwall’s Inequality). If α is a real constant, β(t) ≥ 0 and φ(t)
are continuous real functions for a ≤ t ≤ b satisfying

φ(t) ≤ α +
∫ t

a
β(s)φ(s)ds (4.11)

then
φ(t) ≤ e

∫ t

a
β(s)ds. (4.12)

Proof. See [11, p. 36]

Theorem 4.1.4. Suppose β is given in (−∞,∞) and the homogeneous system (4.1)
is uniformly asymptotically stable for t0 ≥ β. If the matrix function B(t) satisfies∫ t

t0
|B(s)|ds ≤ γ(t− t0) + τ, for all t ≥ t0 ≥ β (4.13)

for some constants γ = γ(β) > 0, τ = τ(β), then there is a threshold r > 0 such
that the system (4.10) is uniformly asymptotically stable if γ < r.
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Proof. If X(t) is a fundamental matrix solution of the homogeneous system (4.1)
and the homogeneous system is uniformly asymptotically stable for t0 ≥ β, then
there are constants K = K(β) > 0, η = η(β) > 0 such that (4.5) is satisfied.
Inserting this into the variation of parameters formula (4.9) we get

|x(t)| ≤ Ke−η(t−to)|x(t0)|+K
∫ t

t0
e−η(t−s)|B(s)| · |x(s)|ds. (4.14)

If z(t) = eηt|x(t)|, this implies

z(t) ≤ Kz(t0) +
∫ t

t0
K|B(s)|z(s)ds. (4.15)

Applying Grönwalds inequality yields

z(t) ≤ Ke
k
∫ t

t0
|B(s)|ds

z(t0). (4.16)

Using the condition (4.13) we finally get

|x(t)| ≤ KeKτ |x(t0)|e−(η−Kγ)(t−t0). (4.17)

Thus, if r = η/K and γ < r, the system (4.10) is uniformly asymptotically stable.

For perturbations of the form f(x, t) = f(t) equation (4.8) takes the form

ẋ = A(t)x+ f(t). (4.18)

Note, that x = 0 is not a fixed point of (4.18). Therefore, we can only make
statements about the boundedness of the solutions.

Theorem 4.1.5. Suppose β is given in (−∞,∞) and the homogeneous system (4.1)
is uniformly asymptotically stable for t0 ≥ β. If the continuous function f(t) is
bounded, then the non-homogeneous system (4.18) is bounded.

Proof. If X(t) is a fundamental matrix solution of (4.1), then the condition for
uniform asymptotic stability (4.5) and the variation of constants formula (4.9) imply
that for any solution of (4.18)

|x(t)| ≤ Ke−η(t−t0)|x(t0)|+K
∫ t

t0
e−η(t−s)|f(s)|ds. (4.19)

When f(t) is bounded, i.e. |f(t)| ≤ C then

|x(t)| ≤ Ke−η(t−t0)|x(t0)|+KC
∫ t

t0
e−η(t−s)ds. (4.20)

and thus, any solution of (4.18) is bounded for any t ≥ t0 by

|x(t)| ≤ K|x(t0)|+ KC

η
. (4.21)
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4.2 Floquet Theory
In this section we will study periodic linear systems

ẋ = A(t)x, A(t+ T ) = A(t). (4.22)

The theoretical framework for such systems is the so called Floquet theory. This
section is in a large part based on Chapter 2.4 of Chicone’s Ordinary differential
equations with applications [4].

Theorem 4.2.1 (Floquet’s Theorem). If X(t) is a fundamental matrix solution of
(4.22), then there exist a periodic matrix function P (t+ T ) = P (t) and a matrix B
such that

X(t) = P (t)etB. (4.23)
The matrix B is given by

eTB = X(0)−1X(T ). (4.24)

Proof. See [4, p. 189]

The decomposition of the fundamental matrix into a periodic and an exponential
part X(t) = P (t)etB is called Floquet normal form. The matrix eTB = X(0)−1X(T )
is called mondronomy matrix. The eigenvalues of the mondronomy matrix are called
characteristic multipliers of the system. A complex number µ is called character-
istic exponent or Floquet exponent, if ρ is a characteristic multiplier and eµT = ρ.
Note, that there are exactly n characteristic multipliers but infinitely many Floquet
exponents, since µ+ 2πik/T is a Floquet exponent for every integer k if eµT = ρ.

Theorem 4.2.2. If µ is a Floquet exponent of (4.22) and ρ = eµT the corresponding
characteristic multiplier, then there is a nontrivial solution of the form

x(t) = eµtp(t), (4.25)

where p(t+ T ) = p(t) is a periodic function and x(t+ T ) = ρx(t).

Proof. See [4, p. 198]

The stability of the zero solution of (4.22) can be determined by the Floquet
multipliers.

Theorem 4.2.3. The solution x(t) = 0 of the system (4.22) is

1. uniformly asymptotically stable, if all characteristic multipliers have modulus
less than one (or equivalently all Floquet exponents have negative real part).

2. unstable, if at least one characteristic multiplier has modulus greater than one
(or equivalently at least one Floquet exponent has positive real part).

Proof. See [11, p. 120] and [4, p. 194–195]

Note, that the stability of the zero solution is not determined by the eigenvalues
of A(t). Particularly, if λi is an eigenvalue of A(t), the condition <(λi) < 0 for all
λi does not ensure the stability of the zero solution which can be seen from the
following counter example

A(t) =
(
−1 + 3

2 cos2(t) 1− 3
2 sin(t) cos(t)

−1− 3
2 sin(t) cos(t) −1 + 3

2 sin2(t)

)
. (4.26)
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The matrix has the time independent eigenvalues 1/4(−1 ±
√

7i) but on the other
hand

x(t) = et/2
(
− cos(t)
sin(t)

)
(4.27)

is a solution of system (4.22) with matrix (4.26) and thus the system is unstable.

Although the stability of the system is fully determined by the Floquet expo-
nents, it is not at all clear how to find the eigenvalues of the mondronomy matrix
without solving the entire system. Nevertheless, the theory provides a straightfor-
ward approach to determine the Floquet exponents numerically as follows:

1. Choose initial conditions for the fundamental matrix solution Φ(0).

2. Integrate the system (4.22) over one period T to get X(T ).

3. Compute the eigenvalues λi of the mondronomy matrix eTB = X(0)−1X(T )

4. Calculate the corresponding Floquet exponent

µi = 1
T

ln(λi). (4.28)

For the special case of the so called Hill equation there exists an alternative approach
for determining the stability of the system that will be discussed in the next section.

4.3 The Mathieu Equation
An important example of a linear periodic system is second order Hill equation

ẍ+ J(t)x = 0, (4.29)

where J(t) = ∑∞
l=−∞ θle

2ilt is an even function with period T = π. Depending on
the specific shape of J(t), solutions are either bounded for all time, or the amplitude
of the oscillations in solutions grows exponentially. The stability of the solutions
is determined by the Floquet exponents. Hill showed that the solutions can be
expressed in terms of determinants of infinite matrices [13]. In the following we will
outline this method for a special case of (4.29) with only one harmonic mode, known
as the Mathieu equation

ẍ+ [θ0 + 2θ1 cos(2t)]x = 0. (4.30)

4.3.1 Inifinite Determinants
From Floquet theory we know that solutions of (4.30) can be separated into an
exponential and a periodic part

x(t) = eµt
∞∑

l=−∞
ble

2ilt. (4.31)

When the Floquet exponent µ has negative real part, then the solution is asymp-
totically stable. Substituting (4.31) into the differential equation (4.30) we obtain
an infinite set of equations

[(µ+ 2il)2 + θ0]bl + θ1bl+1 + θ1bl−1 = 0. (4.32)
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. This equation can also be written as a determinant of an infinite matrix

∆(µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
...

...
... . .

.

· · · (iµ+ 2)2 − θ0 −θ1 0 · · ·
· · · −θ1 iµ2 − θ0 −θ1 · · ·
· · · 0 −θ1 (iµ− 2)2 − θ0 · · ·

. .
. ...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.33)

Whittaker and Watson have shown that [33]

∆(iµ) = ∆(0)− sin2(πiµ/2)
sin2(π

√
θ0/2)

, (4.34)

and therefore, the roots of the determinant (4.33) are given by the roots of the
equation

sin2(πiµ/2) = ∆(0) sin2
(
π
√
θ0/2

)
. (4.35)

Using the identity sin2(x/2) = [1 − cos(x)]/2, we can then express the Floquet
exponent by

µ = 1
iπ

arccos
[
1− 2∆(0) sin2

(
π
√
θ0/2

)]
. (4.36)

The right hand side only depends on the system parameters θ0 and θ1. The infi-
nite determinant ∆(0) can be approximated by a sufficiently large finite matrix and
therefore, we can compute the Floquet exponents. The Mathieu system is asymp-
totically stable for the given parameters, when all real parts of the exponents are
smaller than zero.

4.3.2 The Damped Mathieu Equation
A generalization of the Mathieu equation can be obtained by adding a damping
term to (4.30)

ẍ+ 2ξẋ+ [θ0 + 2θ1 cos(2t)]x = 0, (4.37)

where ξ > 0 is a damping parameter. Substituting y = eξtx yields

ÿ + [θ0 − ξ2 + 2θ1 cos(2t)]y = 0, (4.38)

which is an undamped Mathieu equation of the form (4.30). From Theorem 4.2.2
we know that solutions of (4.38) can be written in the form y(t) = eµtp(t). The
solutions of (4.37) are then given by

x(t) = e(ξ+µ)tp(t). (4.39)

Thus, the damped Mathieu equation (4.37) uniformly asymptotically stable if

Re(µ) + ξ < 0. (4.40)

The Floquet exponent µ of the undamped Mathieu equation (4.38) can be computed
numerically as outlined in the previous section.



Chapter 5

The Damped Pendulum with
Torque

In this chapter we will analyze the asymptotic dynamic states of the damped pen-
dulum with constant torque

φ̈+ αφ̇+K sin(φ) = P. (5.1)

This system possesses two asymptotic states, a fixed point and a limit cycle. It has
been shown, that there exist certain parameter regimes where either only one of
these states is stable or both coexist. The phase boundary between the coexistence
regime and the globally stable fixed point regime corresponds to a homoclinic bi-
furcation. We introduce a linearization approach for approximating this boundary.
This approach will be generalized to arbitrary network structures in the following
chapter. At first, we start with an analysis of the two node system and show how
the dynamics of this system is related to (5.1).

5.1 The Two Node System
The most simple network system, consists of a generator and a consumer connected
by a single line. The swing equation for this system is given by

φ̈1 = P1 − αφ̇1 −K sin(φ1 − φ2) (5.2)
φ̈2 = P2 − αφ̇2 −K sin(φ2 − φ1). (5.3)

Similar to the damped pendulum with torque, this system has two possible asymp-
totic states: Either the two nodes are synchronized at a certain frequency or they
are desynchronized and oscillating around their natural frequency. Because of the
symmetries discussed in Section (3.2) the dynamics of the 4-dimensional system can
be reduced to a 2-dimensional system. It turns out that this reduced system can
be mapped to the equation of the damped pendulum with torque (5.1). Here, the
synchronous and non-synchronous state of the two node system correspond to the
stable fixed point and the stable limit cycle of the damped pendulum with torque.

5.1.1 Stability of Fixed Points in the Two Node System
The two node system possesses two different fixed points. We will analyze the linear
stability of these points by applying the results of Section 3.3. We assume to be in

26



27

the co-rotating frame and therefore P1 = −P2 ≡ P . The power flow of the system
is given by

P = K sin(φ1 − φ2). (5.4)

If we choose φ2 = 0, the solution of the power flow is given by φ1 = arcsin(P/K),
with |φ1 − φ2| < π/2. The Laplacian defined as in (3.19) is given by

L =
√
K2 − P 2

(
−1 +1
+1 −1

)
. (5.5)

Here, we used the relation cos(arcsin(x)) =
√

1− x2. The eigenvalues of L are
λ1 = 0 and λ2 = −2

√
K2 − P 2. The eigenvalues of the Jacobian as defined in (3.29)

are then given by

σ1 = 0
σ2 = −α

σ3 =
−α +

√
α2 − 8

√
K2 − P 2

2

σ4 =
−α−

√
α2 − 8

√
K2 − P 2

2 .

The eigenvalues σ1 and σ2 correspond to the global shift of phases and the global
shift of frequencies, which declines exponentially. The eigenvalues σ3 and σ4 can be
complex numbers and correspond to the damped harmonic eigenmode of the system
in opposite rotation directions. For

α2 ≥ 8
√
K2 − P 2 (5.6)

these modes are over-damped.

5.1.2 Dimension Reduction of Two Node System
If we make a coordinate change to φ+ = φ1 + φ2 and φ− = φ1 − φ2, the differential
equations decouple and we get

φ̈+ = −αφ̇+ (5.7)
φ̈− = 2P − αφ̇− − 2K sin(φ−). (5.8)

Thus φ+ declines exponentially and the remaining system reduces to a 2-dimensional
system. Setting φ = φ−, P ′ = 2P and K ′ = 2K, equation (5.8) becomes

φ̈ = P ′ − αφ̇−K ′ sin(φ), (5.9)

which is exactly the dynamics of the damped pendulum with torque (5.1). The
power flow at the fixed point is given by

P ′ = K ′ sin(φ∗). (5.10)

This equation has the two solutions φ∗ = arcsin(P ′/K ′) and φ∗2 = arcsin(P ′/K ′)+π.
We will see that those correspond to a stable fixed point and a saddle point. Assume
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a small deviation from the fixed point solution φ = φ∗ + δφ. Then we can expand
the sine function and get

δφ̈ = −αδφ̇−
√
K ′2 − P ′2δφ. (5.11)

The eigenvalues of the Jacobian are

σ+ =
−α +

√
α2 − 4

√
K ′2 − P ′2

2

σ− =
−α−

√
α2 − 4

√
K ′2 − P ′2

2 ,

and correspond to the eigenvalues σ3 and σ4 of the two node system derived in the
previous section. A linearization at the other fixed points yields a similar dynamical
equation

δφ̈ = −αδφ̇+
√
K ′2 − P ′2δφ, (5.12)

with a change of sign in front of the second term on the right hand side. However,
this completely changes the dynamical behavior since the eigenvalues of the Jacobian
are given by

σ+ =
−α +

√
α2 + 4

√
K ′2 − P ′2

2

σ− =
−α−

√
α2 + 4

√
K ′2 − P ′2

2 ,

and thus, σ+ > 0. The fixed point φ∗2 = arcsin(P ′/K ′)+π is therefore a saddle point
of the dynamical system.

5.2 Limit Cycle of the Damped Pendulum with
Torque

In this section we will derive different approximations for the limit cycle trajectory
and its stability. A low damping approximation α� 1 of the homoclinic bifurcation
between the regime where the stable fixed point is globally asymptotically stable
and the regime where stable fixed point and stable limit cycle coexist follows the
approach in [16]. An approximation of the limit cycle trajectory for the parameter
regime where (P/α)2 � K was derived in [17]. We will assess the stability in this
regime by a linearization approach.

5.2.1 Homoclinic Bifurcation Approximation
In the limit of small damping and small torque (5.1) reduces to the dynamics of the
nonlinear pendulum

φ̈+K sin(φ) = 0. (5.13)

This equation has two fixed points: A stable fixed point φ(t) = 0 and a saddle
point φ(t) = ±π. Multiplying (5.13) by φ̇ yields

φ̈φ̇+K sin(φ)φ̇ = 0, (5.14)
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which can also be written as

d

dt

[1
2 φ̇

2 −K cos(φ)
]

= 0. (5.15)

This equation corresponds to the conservation of energy and thus we can define an
energy function as

E = 1
2 φ̇

2 +K (1− cos(φ)) , (5.16)

where we assumed that the energy at the stable fixed point is zero, E(φ = 0, φ̇ =
0) = 0. The energy at the saddle point is then E(φ = ±π, φ̇ = 0) = 2K.

In the following we want to evaluate this energy function for the dynamics of the
damped pendulum with torque (5.1). The change of energy is given by

dE

dt
= φ̈φ̇+K sin(φ)φ̇ = Pφ̇− αφ̇2. (5.17)

When the stable fixed point is globally stable, the trajectory in the phase space
is spiraling towards the fixed point and the average energy over one period of this
spiral is decreasing for all time. However, at the boundary between the globally
stable and the coexistence regime there exists a homoclinic orbit that connects the
saddle point with itself and the average energy over a period is given by

dE

dt
= 0, (5.18)

and therefore
Pφ̇− αφ̇2 = 0. (5.19)

Calculating the time averages φ̇ and φ̇2 yields

φ̇ = 1
T

∫ T

0
φ̇dt = 1

T

∫ π

−π
dφ = 2π

T
(5.20)

φ̇2 = 1
T

∫ T

0
φ̇2dt = 1

T

∫ π

−π
φ̇dφ (5.21)

= 1
T

∫ π

−π

√
2E(φ, φ̇) + 2K(cos(φ)− 1)dφ. (5.22)

For the specific parameters when the fixed point looses global stability and the
limit cycle becomes stable there exists a homoclinic orbit that connects the saddle
point with itself. With the low damping approximation we can assume assume the
energy to be constant throughout the period. Evaluating the integral (5.22) with
E(φ, φ̇) ≈ 2K yields ∫ π

−π

√
2K + 2K cos(φ)dφ = 8

√
K. (5.23)

Inserting (5.20), (5.22) and (5.23) into (5.19) finally gives the low-damping approx-
imation of the boundary between the globally stable and the coexistence regime

P

α
≈ 4
π

√
K. (5.24)
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5.2.2 Linearization Approximation
When the parameter K = 0, the dynamics of (5.1) reduces to

φ̈ = P − αφ̇. (5.25)

The dynamics of the frequency ω = φ̇ is then given by

ω(t) = Ce−αt + P

α
. (5.26)

Therefore, the model has a stable limit cycle at ω = P
α
. For K > 0 we assume that

the phase can still be approximated by φ ≈ (P/α)t and the frequency is given by
ω(t) = P

α
+ f(t). Inserting this into (5.1) yields

ḟ = −αf −K sin
(
P

α
t
)
. (5.27)

The solution of this differential equation is given by

f(t) = Kα

P 2 + α4

[
P cos

(
P

α
t
)
− α2 sin

(
P

α
t
)]

+ Ce−αt. (5.28)

For P � α2 this can be approximated by

f(t) ≈ Kα

P
cos

(
P

α
t
)

+ Ce−αt, (5.29)

and thus the model has a stable limit cycle that is approximately given by

ω(t) ≈ P

α
+ Kα

P
cos

(
P

α
t
)
. (5.30)

Integrating this equation yields

φ(t) = P

α
t+ Kα2

P 2 sin
(
P

α
t
)
. (5.31)

Hence, the initial assumption φ ≈ (P/α)t holds if (P/α)2 � K.

We want to generalize this approach for a finite time-dependent variation of the
phase

φ(t) = P

α
t+ δφ(t). (5.32)

Inserting this into equation (5.1) yields

δφ̈ = −αδφ̇−K sin
(
P

α
t+ δφ

)
. (5.33)

If we assume δφ to be small, we can expand (5.33) to linear order and get

δφ̈ ≈ −αδφ̇−K sin
(
P

α
t
)
−K cos

(
P

α
t
)
δφ. (5.34)

From theorem 4.1.5 we know that this non-homogeneous equation is bounded if the
homogeneous equation

δφ̈+ αδφ̇+K cos
(
P

α
t
)
δφ = 0 (5.35)
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is uniformly asymptotically stable. The homogeneous equation (5.35) has the form
of a damped Mathieu equation. Therefore, we can determine the the stability as
described in Section 4.3.2. The linear approximation of the phase boundary between
the regime where the fixed point is globally stable and the regime where fixed point
and limit cycle coexist is depicted in Figure 5.1. Although for larger values of K
this approximation seems to be inferior compared to the approximation derived in
the previous chapter, it still gives a rather convenient result.

Figure 5.1: Phase boundary in the stability phase diagram of the damped pendulum
with torque. The torque parameter is set to P = 1. The boundaries are given by the
solid lines. The dashed line is the linear approximation of the boundary based on
the numerical computation of the Floquet exponents for the corresponding Mathieu
equation. The dotted line is the approximation given by equation (5.24).

5.3 The Infinite Grid Model
The dynamics of the damped pendulum with torque is often used as a model of
a single generator coupled with strength to a grid. Here, it is assumed that the
dynamics of the generator has no influence on the dynamics of the grid. This is
equivalent to the assumption that the grid has infinitely large inertia, which is why
the model is also known as the infinite grid model. The phase angle φ0 of the single
generator is measured relative to the phase angle of the grid φ∗ and the frequency ω
is measured in the co-rotating frame of the grid. The fixed point φ0 = φ∗ and ω = 0
corresponds to the synchronization with the grid frequency.
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5.3.1 Effective Coupling Strength
In this section we will derive the effective coupling strength of a single node i = 0
attached to a synchronized grid of n nodes by an arbitrary number of connections.
The dynamics is given by the swing equation

φ̈i = Pi − αiφ̇i −
n∑
j=0

Kij sin(φi − φj), 0 ≤ i ≤ n. (5.36)

We further assume that the synchronized grid is infinitely heavy, i.e. every node has
infinite inertia. In Section 2.2.2, we have shown that

Pi = P source
i

JiΩ
, αi = Di

JiΩ
, Kij = |Vi||Vj|

xijJiΩ
, (5.37)

and thus, Pi → 0, α→ 0 and Kij → 0 for Ji →∞. When we are in the co-rotating
frame of the grid, the solutions φj for j = 1, . . . , n are simply given by constant
phase angles φ∗j . We assume the grid to be in synchronous state and thus

Pi =
n∑
j=1

Kij sin(φ∗i − φ∗j) for j = 1, . . . , n. (5.38)

The dynamics of the system then reduces to the dynamics of the attached node

φ̇0 = ω0 (5.39)

ω̇0 = P0 − αω0 −
n∑
j=1

K0j sin(φ0 − φ∗j). (5.40)

The goal is now to reduce this system to an infinite grid model of the form

φ̈0 = P0 − αφ̇0 −K sin(φ− φ∗), (5.41)

where K is the effective coupling strength between the single node and the grid and
φ∗ is the effective phase angle of the grid. We can rewrite the sum of coupling terms
in (5.40) as

n∑
j=1

K0j sin(φ0 − φ∗j) =
n∑
j=1

K0j=
[
ei(φ0−φ∗

j )
]

(5.42)

= =
eiφ0

n∑
j=1

K0je
−iφ∗

j

 (5.43)

= =
eiφ0

 n∑
j=1

K0j cos(φ∗j)− i
n∑
j=1

K0j sin(φ∗j)
 . (5.44)

The same can be done for the coupling term in (5.41)

K sin(φ− φ∗) = =
[
eiφ0(Ke−iφ∗)

]
. (5.45)

Comparing (5.44) and (5.45) we get the relation

Keiφ
∗ =

n∑
j=1

K0j cos(φ∗j) + i
n∑
j=1

K0j sin(φ∗j). (5.46)
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The absolute of a complex number is given by |x| =
√
<(x)2 + =(x)2 and therefore,

the effective coupling strength is given by

K =

√√√√√ n∑
j=1

K0j cos(φ∗j)
2

+
 n∑
j=1

K0j sin(φ∗j)
2

(5.47)

=
√√√√ n∑
j,l=1

K0jK0l cos(φ∗j) cos(φ∗l ) +
n∑

j,l=1
K0jK0l sin(φ∗j) sin(φ∗l ) (5.48)

=
√√√√ n∑
j,l=1

K0jK0l cos(φ∗j − φ∗l ). (5.49)

If the node 0 is connected to only one single node j in grid by a link with coupling
strength Kij, then (5.49) reduces to K = K0j.

5.3.2 Limit Cycle Stability in the Infinite Grid Model
In Section 5.2.1 we derived a low-damping approximation for the boundary between
the parameter regime where the stable fixed point is globally stable and the regime,
where fixed point and limit cycle coexist. Together with the effective coupling
strength (5.49) derived in the previous section we get a condition for the stability of
the limit cycle in the infinite grid model that solely depends on the local parameters
of the detached node and the solution of the static power flow equations in the grid.
With this, the limit cycle is stable if

P0

α0
>

4
π

 n∑
j,l=1

K0jK0l cos(φ∗j − φ∗l )
 1

4

, (5.50)

As discussed in Section 3.4.1, in networks of Kuramoto oscillators with inertia we
can categorize the nodes into three different classes: nodes with poor, with fair and
with high single node basin stability. It has been motivated, that for nodes with fair
basin stability the only non-synchronous state that can be induced by a perturbation
is the limit cycle state where only the perturbed node is desynchronized from the
rest of the grid [17]. For nodes with high single node basin stability this limit cycle
is unstable. As a result, equation (5.50) can be interpreted as an approximative
condition that a node in a network of Kuramoto oscillators with inertia has high
single node basin stability.



Chapter 6

Stability of Synchonous Clusters
with Distinct Frequency

In this chapter we will analyze the stability of synchronous clusters in networks of
Kuramoto oscillators with inertia. The nonlinear interaction between the oscillators
then divides into interactions within the cluster and interactions between the clusters

φ̈i = Pi − αiφ̇i −
∑
j∈C(i)

Kij sin(φi − φj)−
∑
j /∈C(i)

Kij sin(φi − φj), (6.1)

where C(i) is the cluster containing oscillator i. We will derive conditions for an
exact dynamical decoupling where all individual clusters are in a completely syn-
chronized and in a stationary state. Further, we will show that these conditions
correspond to an additional symmetry in the network. In real world topologies such
symmetries usually do not occur. However, if the dynamical coupling between clus-
ters is small enough, the clusters can still coexist in almost synchronous states. The
corresponding asymptotic dynamical state of the entire system is a limit cycle where
all oscillators of one cluster are bound to a frequency range around the clusters syn-
chronization frequency. Therefore, we can treat the dynamical interaction between
such clusters as a perturbation of the synchronous state of the separated clusters
and make a stability analysis for the linearized system.

Throughout the chapter we will focus on the partitioning of the network into
two clusters. The derived methods can easily be generalized to a higher number of
clusters. An example of such a partitioning is shown in figure 6.1.

6.1 Exact Dynamical Decoupling of Clusters
In Chapter 3 we have seen that there exists a synchronous solution of (6.1) with
a global frequency. In this section we want to investigate the existence of other
stationary states of the system where all single oscillators have constant yet not
global frequency. In particular we are interested in stationary states where several
synchronized clusters of distinct frequencies exist.

34
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Figure 6.1: Partitioning of a network in two clusters. Power flows on links connecting
the clusters (dotted) can be treated as a perturbation of the individual synchronous
states.

6.1.1 Stationary States with Non-global Frequencies
When there is no dynamical interaction between the clusters in the network∑

j /∈C(i)
Kij sin(φi − φj) = 0, (6.2)

equation (6.1) reduces to

φ̈i = Pi − αiφ̇i −
∑
j∈C(i)

Kij sin(φi − φj). (6.3)

This is precisely the swing equation for the subnetwork formed by all nodes and
links in cluster C. Thus, there exists a stationary state where all oscillators in the
cluster are synchronized with a frequency

ω∗C =
∑
i∈C Pi∑
i∈C αi

. (6.4)

The stationary state of the oscillators is then given by

φi(t) = ω∗C(i) · t+ φ∗i , (6.5)

where the constant phase angles φ∗i are the solutions of the nonlinear power flow
equations of the individual clusters

Pi − αiω∗C(i) =
∑
j∈C(i)

Kij sin(φ∗i − φ∗j). (6.6)
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Assume the network is partitioned in two clusters Ca and Cb. For a node i ∈ Ca,
inserting the stationary solutions (6.5) into the decoupling condition (6.2) yields∑

j∈Cb

Kij sin(ω∗abt+ φ∗i − φ∗j) = 0. (6.7)

Here we introduced the beat frequency ω∗ab = ω∗Ca
− ω∗Cb

. Applying an addition
theorem we get

sin(ω∗abt)
∑
j∈Cb

Kij cos(φ∗i − φ∗j) + cos(ω∗abt)
∑
j∈Cb

Kij sin(φ∗i − φ∗j) = 0, (6.8)

and thus for every oscillator i in cluster Ca the conditions∑
j∈Cb

Kij cos(φ∗i − φ∗j) = 0 (6.9)
∑
j∈Cb

Kij sin(φ∗i − φ∗j) = 0 (6.10)

have to be fulfilled. If and only if these and the equivalent conditions for the oscil-
lators in cluster Cb hold, there is no dynamical interaction between the two clusters.
Note, that this does not imply there is no power flowing along links connecting both
clusters. Actually, the power flow on such a link is given by

Fij(t) = Kij sin(ω∗abt+ φ∗i − φ∗j), (6.11)
and thus only the temporal mean of this flow vanishes. Further, from (6.7) follows
that the sum of all flows between a single oscillator and the opposite cluster must
be zero for every point in time.

6.1.2 Symmetries of Decoupled States
In Sections 3.2 and 3.3 we have shown that there exists the symmetry of a homoge-
neous constant phase shift corresponding to a zero eigenvalue of the Laplacian. It
can easily be seen, that there exists a similar symmetry in the case of the exact dy-
namical decoupling of two clusters corresponding to a homogeneous constant phase
shift in only one of the clusters. We will now show, that this symmetry implies an
additional zero eigenvalue of the Laplacian. If x is a vector in the null space of L,
a similar approach as in equation (2.19) yields

0 = xTLx =
n∑

i,j=1
Kij cos(φ∗i − φ∗j)(xi − xj)2. (6.12)

As discussed before, that the vector x = (1, ..., 1)T obviously fulfills this condition.
We will now show, that there exists another linear independent vector that fulfills
the condition (6.12) and which can be defined as

xi =

1 if i ∈ Ca
0 if i ∈ Cb.

(6.13)

With this, we can write (6.12) as

0 =
n∑
i=1

 ∑
j∈C(i)

Kij cos(φ∗i − φ∗j)(xi − xj)2 +
∑
j /∈C(i)

Kij cos(φ∗i − φ∗j)(xi − xj)2


(6.14)

=
n∑
i=1

∑
j /∈C(i)

Kij cos(φ∗i − φ∗j). (6.15)
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In case of exact dynamical decoupling, the condition (6.9) holds and therefore, the
vector x defined as in (6.13) is an eigenvector of the Laplacian with corresponding
eigenvalue λ2 = 0.

Let us now introduce an arbitrary homogeneous phase shift in one cluster

φ∗i →

φ∗i + δ if i ∈ Ca
φ∗i if i ∈ Cb.

(6.16)

Since we assume the coupling Kij to be symmetric and using the fact that cosine is
a symmetric function, inserting this into the condition above yields

0 =
∑
i∈Ca

∑
j∈Cb

Kij cos(φ∗i − φ∗j + δ) (6.17)

=
∑
i∈Ca

cos(δ)
∑
j∈Cb

Kij cos(φ∗i − φ∗j)− sin(δ)
∑
j∈Cb

Kij sin(φ∗i − φ∗j)
 . (6.18)

Again, if the conditions (6.9) and (6.10) for exact dynamical decoupling hold, equa-
tion (6.18) is fulfilled for any arbitrary phase shift δ. The additional zero eigenvalue
of the Laplacian therefore corresponds to a symmetry regarding homogeneous phase
shifts in one of the clusters.

When the two cluster do not decouple completely, the additional phase shift
symmetry disappears and thus, the eigenvalue λ2(δ) will depend on the relative
phase shift δ between the clusters. Since the clusters are rotating at different speed,
the phase shift is in fact permanently changing by δ = ω∗abt. Thus, the Laplacian
and its eigenvalues become periodically time dependent. The implications of this
will be discussed in the following chapter.

6.2 Stability of Almost Decoupled Clusters
The conditions for dynamical decoupling of clusters derived in the previous section
are rather strong. Real world networks like power grids usually do not have such
highly symmetric structure. However, if the dynamical coupling between different
clusters in the network is small enough there exist asymptotically stable solutions
close to the synchronous states of the separated clusters. We therefore make an
ansatz

φi(t) = ω∗C(i) · t+ φ∗i + δφi(t), (6.19)
where ω∗C(i) and φ∗i are the synchronization frequency and the power flow solutions
of the cluster C(i) defined as in (6.4) and (6.6) respectively. If we assume the
deviations δφi(t) to be small, we can assess the stability of the asymptotic states by
linearizing the nonlinear equations and applying the theory of linear time-varying
systems introduced in Chapter 4.

6.2.1 Effective Coupling Strength
Assume, the network is again partitioned into two clusters Ca and Cb. For a node
i ∈ Ca, inserting (6.19) into the coupling term between the clusters yields∑

j∈Cb

Kij sin(φi − φj) =
∑
j∈Cb

Kij sin(ω∗abt+ φ∗i − φ∗j + δφi − δφj). (6.20)
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Expanding the sine function to zeroth order we get∑
j∈Cb

Kij sin(φi − φj) ≈
∑
j∈Cb

Kij sin(ω∗abt+ φ∗i − φ∗j). (6.21)

Similar to (5.45), we want to define an effective coupling strength Kib for a node
i ∈ Ca to the cluster Cb by setting

Kib sin(ω∗abt+ φ∗ib) =
∑
j∈Cb

Kij sin(ω∗abt+ φ∗i − φ∗j). (6.22)

The derivation is then analogous to the one in Section 5.3.1 and yields

Kib =
√ ∑
j,l∈Cb

KijKil cos(φ∗j − φ∗l ). (6.23)

When the node i is not at the boundary to the other cluster, i.e. there does not exist
any link to a node j ∈ Cb, then Kib = 0. If there exists exactly one such connection,
then Kib = Kij. When the conditions (6.9) and (6.10) for dynamical decoupling are
fulfilled, then also Kib = 0. Note, that by definition Kib ≥ 0. On the other hand,
the effective coupling becomes maximal if φ∗j = φ∗l for all j, l ∈ Cb and then

Kib =
√ ∑
j,l∈Cb

KijKil =
√

(
∑
j,l∈Cb

Kij)2 =
∑
j∈Cb

Kij. (6.24)

The effective coupling is thus bounded by

0 ≤ Kib ≤
∑
j∈Cb

Kij. (6.25)

Generally, the coupling Kib gets small when the phases φ∗j of the nodes j ∈ Cb
connected to a node i ∈ Ca are widely spread. On the other hand, when the phase
differences of all nodes in cluster Cb that are connected to i fulfill |φ∗j − φ∗l | < π/2
then the coupling has a lower bound

Kib =
√∑
j∈Cb

K2
ij +

∑
j 6=l∈Cb

KijKil cos(φ∗j − φ∗l ) ≥
√∑
j∈Cb

K2
ij. (6.26)

In this case, the dynamical coupling to the other cluster only gets small if there are
very few connections with small coupling strengths Kij.

6.2.2 Linearization of the Dynamical Equations
In this section we want to linearize the system of nonlinear differential equations
(6.1). For this purpose, we insert the ansatz (6.19) and expand the sine functions
to first order. For a node i ∈ Ca we then get

δφ̈i =− αiδφ̇i +
∑
j∈a

Laijδφj −Kib sin(ω∗abt+ φ∗ib)

−
∑
j∈b

Kij cos(ωabt+ φ∗ij)(δφi − δφj).
(6.27)
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Here we used the definition of the effective coupling (6.22) and the fact that the
phase angles φ∗i of the nodes in Ca fulfill the power flow equations (6.6). We further
introduced the Laplacian of the cluster Ca

Laij = −δij
∑
l∈a

Kil cos(φ∗i − φ∗l ) +Kij cos(φ∗i − φ∗j). (6.28)

For the nodes in cluster Cb a similar result can be derived. The major difference is
a change the sign of the zeroth order term of the expansion due to the definition of
ωab and the fact that the sine is an odd function. By setting δωi = δφ̇i the system
of linear ordinary differential equations can be written as a first order system(

δφ̇
δω̇

)
=
(

0 1
L(t) −α

)(
δφ
δω

)
+
(

0
s(t)

)
, (6.29)

with α = diag(αi), the non-homogeneous coupling

si(t) =

−Kib sin(ω∗abt+ φ∗ib) if i ∈ Ca
+Kia sin(ω∗abt+ φ∗ia) if i ∈ Cb,

(6.30)

and the time dependent Laplacian L(t) = L0 + L1(t). Here, L0 is the Laplacian of
the two separated clusters

L0 =
(
La 0
0 Lb

)
, (6.31)

and L1(t) the Laplacian of the ’coupling network’ between the two clusters

L1
ij(t) = −δij

∑
l /∈C(i)

Kil cos(ωabt+ φ∗ij) +Kij cos(ωabt+ φ∗ij), j /∈ C(i). (6.32)

Equation (6.29) is a non-homogeneous linear periodic system of the form

ẋ = [A+B(t)] x+ f(t), (6.33)

with the two matrices

A =
(

0 1
L0 −α

)
, B(t) =

(
0 0

L1(t) 0

)
. (6.34)

B(t) and f(t) are periodic functions with period T = 2π/ωab.

6.2.3 Analytic Conditions for Linear Stability
From Theorem 4.1.5 follows that (6.33) is bounded if the homogeneous system

ẋ = [A+B(t)] x (6.35)

is uniformly asymptotically stable. Further, if the decoupled system

ẋ = Ax, (6.36)

with A defined in (6.34) is uniformly asymptotically stable, i.e. the real parts of all
eigenvalues of A are smaller than zero, it follows from theorem 4.1.4 that the system
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(6.35) is uniformly asymptotically stable if
∫ t
t0
|B(s)|ds is growing linearly with a

rate γ smaller than a certain constant. Applying the spectral norm we get

|B(t)|2 =
√
λmax (BT (t)B(t)) =

√
λmax ([L1(t)]2), (6.37)

and therefore ∫ T

0
|B(s)|ds =

∫ T

0

√
λmax ([L1(t)]2) = γ · T, (6.38)

where T = 2π/ωab is the periodicity of B(t).

The fundamental matrix solution of (6.36) is given by X(t)X−1(t0) = eA(t−t0).
We have shown, that for the decoupled system the Jacobian A has two zero eigen-
values. These correspond to homogeneous phase shifts in each cluster and do not
change the dynamics of the system. We can hence set one phase per cluster to
zero and thereby reduce the dimension of the dynamical system by two. We further
assume, that the two clusters are both in a stable synchronous state and therefore

|X(t)X−1(t0)| = |eA(t−t0)| ≤ e−ηt, (6.39)

where
η = min

i
|<[λi(A)]| (6.40)

is the slowest decline rate of the decoupled system (6.36). From (4.17) it follows,
that the homogeneous system (6.35) is uniformly asymptotically stable and thus,
the non-homogeneous system is bounded if γ < η or

1
T

∫ T

0

√
λmax ([L1(t)]2) < min

i
|<[λi(A)]|. (6.41)

The inhomogeneity f(t) is bounded by

|f(t)|2 =
√∑

i

|fi(t)|2 ≤
√∑
i∈Ca

K2
ib +

∑
i∈Cb

K2
ia. (6.42)

From (4.20) it follows that the asymptotic solution of the non-homogeneous system
is bounded by

|x(t)|2 ≤
1
η

√∑
i∈Ca

K2
ib +

∑
i∈Cb

K2
ia. (6.43)

6.2.4 Numeric Approach for Determining Stability
In this section we are going to outline an approach for determining the stability of
the linearized system (6.29) numerically. From Theorem 4.1.5 follows that the sys-
tem is bounded if the homogeneous system 6.35 is uniformly asymptotically stable.
The idea is now to determine the stability of the homogeneous system by using the
Floquet theory introduced in Section 4.2. From theorem 4.2.3 follows that a ho-
mogeneous linear periodic system is uniformly asymptotically stable if all Floquet
exponents have negative real part. We can determine the Floquet exponents of the
system by a numerical integration of the system over one period T = 2π/ωab as
outlined in Section 4.2.
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Figure 6.2: Cluster stability in the IEEE 14-bus system. The power inputs Pi are
drawn from a bimodal distribution that is given by a sum of two normal distributions
with mean µ = +1 and µ = −1 and variance σ = 0.4. Generators (Pi > 0) are
represented as squares and consumers (Pi < 0) are represented as circles. The node
size is proportional to |Pi|.

We will now demonstrate the approach for the example of a three node cluster in
the IEEE 14-bus system (Figure 6.2). As seen above, the stability of the linearized
system is very sensible to the power flows in the different clusters. Therefore, we
want to identify certain distributions of power inputs for which the clustered state
is stable. For this purpose, we randomly draw power inputs Pi from a bimodal
distribution that is given by a sum of two normal distributions centered around
+1 and −1 and calculate the nonlinear power flow. For every power flow scenario
in the network we integrate the linearized system over one period and determine
the Floquet exponents. In this manner, we can identify the scenarios where the
linearized system (6.29) is bounded. Finally, we verify the stability of the clustered
state in the nonlinear system by a numerical integration with the initial conditions
of the synchronous states in the separated clusters and by switching on the coupling
between the clusters at t = 0. The limit cycle of such an asymptotically stable state
is shown in Figure 6.3.
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Figure 6.3: Limit cycle of the clustered state in the nonlinear system. The distribu-
tion of the power inputs is the one shown in Figure 6.2. The damping and coupling
parameters α = 0.1 and K = 4 are homogeneous in the network. The maximal real
part of all Floquet exponents of the linearized system is λmax = −0.042.



Chapter 7

Tri-Stability of Sprout Nodes

In the previous chapters we have shown that in networks of Kuramoto oscillators
with inertia there may exist certain asymptotically stable limit cycles. All of these
solutions follow a similar pattern: single oscillators or clusters of oscillators are
desynchronized from the rest of the grid and oscillate around their natural frequency
or the internal synchronization frequency of the cluster. In this chapter we will show
that for a certain type of nodes, so-called sprout nodes, there may exist an additional
limit cycle where the single node is desynchronized from the rest of the grid and
oscillates around a frequency that lies in between of the global synchronization
frequency and the natural frequency of the node. Analogous to the infinite grid
model introduced in Section 5.3.2 that reproduces the possible asymptotic states
of single nodes, we are going to derive a low-dimensional model that reproduces
different limit cycles of sprout nodes.

7.1 Topological Classification of Nodes
With the help of the probabilistic stability measures outlined in Section 3.4 it has
been shown that the local network structure has a significant impact on the stability
of single nodes [17, 29, 22]. In particular, tree-like structures are significantly larger
vulnerability to local perturbations [17]. Therefore, a more detailed classification of
nodes in such structures was introduced in [22].

A subgraph of a graph G is called a tree-shaped part T ′ if it is a tree and is
maximal with the property that there is exactly one node r ∈ T that has at least
one neighbor in G ′ − T ′. The node r is called the root of T ′. By definition it has
a degree k(r) ≥ 3. The non-root nodes within tree-like shapes can be divided into
leave nodes l that have degree k(l) = 1 and inner tree nodes that are located between
the root and the leaves. All nodes that are not part of tree-shaped parts are referred
to as bulk nodes b.

The smallest possible tree-shape part consists of a root and a number of leaves.
Such leaves are denoted as sprout nodes s. These nodes can be further separated
into so-called dense sprouts having high degree (k(s) ≥ 6) and sparse sprouts having
low degree (k(s) ≤ 5). In contrast, leaves of larger tree-shaped parts are referred to
as proper leaves. The classification of nodes in an example network is depicted in
Figure 7.1.
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Figure 7.1: Spatially embedded representation of a random synthetic power grid.
Nodes are colored according to their topological class. (Figure by Nitzbon et al. (2017)
[22] / CC BY 3.0)

Analyzing the dynamics of a large ensemble of networks reveals that the topo-
logical properties used in the classification scheme above have indeed a large impact
on the transient and asymptotic behavior of the system. Figure 7.2 shows scatter
plots of the single node basin stability and single node survivability for different
frequency bounds ω+. It becomes evident that nodes of the same topological class
tend to have similar dynamical properties.

7.2 Additional Limit Cycle States of Sprout Nodes
The upper right plot of Figure 7.2 gives a rather astonishing result. The parameters
of the swing equation are chosen to Ki = 8, αi = 0.1 and Pi = ±1. The natural
frequency of the individual oscillators is therefore ω′i = Pi/αi = 10. The frequency
bound of the survivability measure is chosen to ω+ = 7.5 < ω′i and thus, every
asymptotic dynamical state with single nodes being desynchronized from the grid
should violate the survivability bound. However, in the scatter plot there is a large
number of nodes having a larger survivability than basin stability. This means that
for a significant number of perturbations at these nodes the system does not return
to the global synchronous state but at the same time the trajectories of all nodes
stay beneath the bound ω+.

A possible explanation of this behavior could be that these perturbation lead to
a state of synchronized clusters with all frequencies being smaller than ω+. However,
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Figure 7.2: Scatter plots and distributions of single-node basin stabilities and sur-
vivabilities for an ensemble of 50 randomly generated networks with n = 100 nodes
each. The nodes are colored corresponding to their topological class. Each of the
four plots has a different perturbation level ∆ω and survivability bound ω∗ = ∆ω.
(Figure by Nitzbon et al. (2017) [22] / CC BY 3.0)

an analysis of the trajectories reveals that the asymptotic states are characterized by
only a single oscillator being desynchronized from the rest of the grid and oscillating
around a frequency that is about half the natural frequency ω′i. The conclusion
is that for these nodes there exists an additional stable limit cycle. Remarkably,
almost all nodes showing this specific behavior are sprout nodes, particularly sprout
nodes with high degree (dense sprouts). The trajectories for the different asymptotic
dynamical states of a sprout note is depicted in Figure 7.3.
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Figure 7.3: Asymptotic dynamical states of a sprout node. In the upper plot the
system converges towards the global synchronous state. The lower plots show the
two distinct limit cycle states of the sprout node. (Figure by Nitzbon et al. (2017) [22] /
CC BY 3.0)

7.3 Low-dimensional Model of Sprout Node Dy-
namics

In this section we want to derive a low-dimensional model for the dynamics of sprout
nodes that reproduces the different asymptotic states. If we denote the sprout node
by s and the root node by r the entire dynamics of the system is given by

φ̈s = Ps − αsφ̇s −Ksr sin(φs − φr) (7.1)
φ̈r = Pr − αrφ̇r −Krs sin(φr − φs)−

∑
j 6=s

Krj sin(φr − φj) (7.2)

φ̈i = Pi − αiφ̇i −Kjr sin(φi − φr)−
∑
j 6=r

Kij sin(φi − φj) for i 6= s, r. (7.3)

We now make a similar approach as in the case of the infinite grid model in Section
5.3.1 and assume that all nodes i 6= s, r have infinite inertia. We further assume
that all these nodes are in a synchronous state and that we are in the co-rotating
frame of this cluster. The dynamical equations then reduce to

φ̈s = Ps − αsφ̇s −Ksr sin(φs − φr) (7.4)
φ̈r = Pr − αrφ̇r −Krs sin(φr − φs)−

∑
j 6=s

Krj sin(φr − φ∗j) (7.5)

Pi =
∑
j 6=r

Kij sin(φ∗i − φ∗j) for i 6= s, r. (7.6)
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Again, we can introduce an effective coupling strength of the root to the rest of the
grid given by setting

Krg sin(φr − φ∗g) =
∑
j 6=s

Krj sin(φr − φ∗j). (7.7)

The derivation is analogous to the one in Section 5.3.1 and yields

Krg =
√∑
j,l 6=s

KrjKrl cos(φ∗j − φ∗l ). (7.8)

Inserting this into the dynamical equation of the root node and measuring all phase
angles relative to φ∗g finally yields

φ̈s = Ps − αsφ̇s −Ksr sin(φs − φr) (7.9)
φ̈r = Pr − αrφ̇r −Krs sin(φr − φs)−Krg sin(φr). (7.10)

So with the assumption that the dynamics of root and sprout has no major impact
on the dynamics of the rest of the grid we were able to reduce the high-dimensional
system to a system of dimension four. The reduced system is nevertheless capable
of capturing the tri-stability of the sprout node having a synchronous fixed point
solution as well as two stable limit cycle solutions for a certain parameter range as
depicted in Figure 7.4.

When the coupling Krg between root and grid goes towards zero, the reduced
model turns into the familiar two node system possessing bi-stability as derived in
Section 5.1. The coupling Krg is therefore the relevant bifurcation parameter for the
transition between bistable and tristable regime. With the reasonable assumption
there are no overly large power imbalances and long range connections to the root
node the phase angle differences in 7.8 are usually small |φ∗j − φ∗l | < π/2. Further,
the simulations underlying the scatter plot Figure 7.2 where done with homogeneous
coupling Kij = K. With this, it follows from equations (6.25) and (6.26) that the
effective coupling of the root is bounded by

√
k − 1K ≤ Krg ≤ (k − 1)K, (7.11)

where k = k(r) is the degree of the root. Thus, with the assumptions made above the
bifurcation parameter is monotonously increasing with the degree of the root. This
explains why particularly dense sprouts tend to reveal the previously unexpected
dynamical behavior depicted in Figure 7.2.
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Figure 7.4: The two limit cycles of a sprout node given by a numerical integration of
the reduced model (7.9) and (7.10). In the upper plot the sprout is oscillating around
its natural frequency P/α = 10, whereas in the lower plot it is oscillating around
a frequency that is only about half its natural frequency. A trajectory approaching
this asymptotic state would not necessarily violate a frequency bound ω+ < P/α.



Chapter 8

Discussion and Outlook

In Chapter 5 we analyzed the dynamics of the damped pendulum with torque. We
have shown that the most simple network of Kuramoto oscillators with inertia, the
two node system, can be reduced to this model. The dynamical system possesses two
asymptotic states, a fixed point and a limit cycle. There are three different regimes:
For P > K only the limit cycle is stable. For P > K either both asymptotic states
coexist or the fixed point is globally stable. The phase boundary between those
to regimes corresponds to a homoclinic bifurcation. Manik et al. [16] derived a
low damping approximation (α� 1) for this boundary. We propose an alternative
approximation for the parameter range (P/α)2 � K by linearizing the dynamics.
With this approach we can can translate the problem to a stability analysis of the
well-known Mathieu equation. Our approach gives a fair albeit inferior approxima-
tion of the phase boundary compared to the low damping approach. The major
advantage is however, that it can be easily generalized to higher order systems as
the swing equation in a network.

In Section 5.3.1 we derived an effective coupling strength of a single node i to a
cluster C of synchronized oscillators

KiC =
√∑
j,l∈C

KijKil cos(φ∗j − φ∗l ). (8.1)

This coupling strength is the zeroth order approximation of the coupling from the
cluster to the single node and it is exact for the infinite grid limit where the dy-
namics of the node has no impact on the dynamics of the cluster. The effective
coupling may be much smaller than the sum of the individual coupling strengths
due to the phase shifts between the single oscillators resulting from the power flow
in the cluster. Under specific conditions the coupling may even vanish. A necessary
condition is here, that there are pairs of nodes in the cluster having large phase an-
gle differences |φ∗j − φ∗l | > π/2 corresponding to large power flows between different
parts of the cluster. Note, that the nodes j and l do not necessarily have to be
connected. In fact, such large phase differences of adjacent nodes are rather unusual
and may even destabilize the cluster itself. Large phase distances are more likely to
occur between pairs of nodes that are distant in the network.

By using the effective coupling strength and the low-damping approximation
of the phase boundary for the damped pendulum with torque, we were able to
derive an analytic condition for the existence of solitary states in the infinite grid

49



50

approximation. Solitary states are stable limit cycles where an all but one oscillator
are synchronized. With the assumption that the dynamics of single oscillator has
no impact on the rest of the grid there exists a solitary state for node i if

ω′i >
4
π

√
Kig, (8.2)

where ω′i = Pi/αi is the natural frequency of the single oscillator and Kig is the
effective coupling strength to the rest of the grid. Hence, the existence of solitary
states does not only depend on the local parameters of the single oscillators but also
on the power flow in the network. A next step should be to verify the validity of
(8.2) by a numerical simulation of oscillator networks.

Solitary states are a special case of the more general situation that groups of
oscillators form almost synchronous clusters that coexist in the network and os-
cillate with distinct frequencies. In Section 6.1 we have shown that these clusters
completely decouple if the effective coupling strength of all nodes to the opposite
clusters vanishes. For realistic network topologies we would not expect such a highly
symmetric structure but when the dynamical coupling is small enough the may still
persist. We made an approach were we treated the coupling as a perturbation of the
synchronous states in the separated cluster. Using a linearization approach similar
as in the case of the damped driven pendulum we were able to derive a condition
for linear stability

ωab
2π

∫ 2π/ωab

0

√
λmax ([L1(t)]2) < min

i
|<[λi(A)]|, (8.3)

where ωab is the beat frequency of the two clusters, A is the Jacobian of the sepa-
rated clusters and L1(t) is the Laplacian of the coupling network. This condition is
a rather conservative estimate of the linear stability since it does not take into ac-
count how the perturbations couple to the modes of the individual clusters. Further
research should attempt to improve the approach by taking the network structure
into account. However, we have shown, that the linear stability of a specific case
can also be determined numerically by computing the Floquet exponents of the lin-
earized system as outlined in Section 6.2.4. This approach is rather efficient, since
it avoids time-consuming computation of long transient trajectories.

Note however, that linear stability is neither a necessary nor sufficient condition
for the stability of the corresponding state in the nonlinear system. The lineariza-
tion of the dynamics is only valid if the mutual dynamically interactions between
the individual clusters are sufficiently small. The asymptotic states of the nonlinear
equation are stable limit cycles and the stability of such periodic orbits can usually
be assessed by linearizing around the specific orbit [10]. However, in case of the
swing equation we do not know the exact mathematical form of these orbits. Never-
theless, for small dynamical couplings the periodic orbit stays close to the stationary
solution of the decoupled case and and we expect a strong correlation between linear
and nonlinear stability. This assumption is also supported by the satisfying results
for the case of the two node system. Further investigations should verify the validity
of the linear approximation also for larger networks.

In Chapter 7 we have shown that for a certain class of nodes, the so-called sprout
nodes, there exists an additional solitary state. Following a similar approach as for
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the solitary states in the infinite grid approximation, we were able to derive a low-
dimensional model that reproduces the tri-stability of these nodes having two stable
limit cycles and the synchronous fixed point for a certain parameter regime. We
have motivated that the relevant bifurcation parameter for the transition between
the bistable and tristable regime is the effective coupling strength between root node
the sprout is attached to and the rest of the grid. We explained that for typical
network structures and power flows this effective coupling is larger for higher degrees
of the root node. Further research should carry out a detailed bifurcation analysis
of this system to gain a deeper insight into the nonlinear dynamics of this exotic
solitary state which is neither synchronized nor decoupled.
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