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Abstract

The electricity system is undergoing a fundamental transition as fossil power
plants are steadily replaced by renewable energy sources. This transformation
comes with several challenges for maintaining the stability and resilience of
the grid. On the one hand, wind and solar power are highly intermittent
and can feed potentially strong fluctuations into the grid. At the same time,
the replacement of synchronous generators with inverter-interfaced generation
units creates a need for implementing grid-forming inverter controls, in order to
maintain resilience against short-term disruptions. Additionally, the electricity
infrastructure needs to be protected against extreme weather events that are
becoming both more severe and more frequent as the climate crisis progresses.

The first part of this thesis addresses the question which impact short-
term renewable fluctuations have on the synchronous grid frequency. For this
purpose, a linear response theory for stochastic perturbations of networked
dynamical systems is derived. This theory is then used to analyze impact
of short-term wind and solar fluctuations on the grid frequency. Since the
power spectral density of such fluctuations is highest at low frequencies, the
frequency response of the system is dominated by a single eigenmode which
corresponds to a quasi-static variation of the synchronous grid frequency. While
the network frequency response is mainly homogenous, it is shown that due to
transmission line losses, the susceptibility to power fluctuations is increasing
along the power flow. This effect was previously observed in simulations of
renewable microgrids but has been unexplained so far.

The second part of the thesis is concerned with modeling grid-forming
inverter controls. While various detailed control schemes have been proposed
in the engineering literature, a universal model for studying the collective
dynamics of such systems has been lacking so far. By utilizing the inherent
symmetry of the synchronous operating state, a normal form for grid-forming
actors is derived. It is shown that this model provides a useful approximation
of certain inverter control dynamics but is also well-suited for a data-driven
modeling approach. The latter is proven by fitting the model to measurements
of a grid-forming inverter that have been taken out in a microgrid lab.

The last part of the thesis deals with analyzing the risk of hurricane-
induced power outages. High wind speeds often cause damage to transmission
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infrastructure which can lead to overloads of other components and thereby
induce a cascade of failures spreading through the entire grid. Simulations of
such scenarios are implemented by combining a meteorological wind field model
with a model for cascading line failures. Wind field simulations are based on
historical hurricane track data. Wind-induced transmission line damages are
modeled stochastically and overload failures are based on a static power flow
analysis. Using Monte Carlo simulations in a synthetic test case resembling the
Texas transmission system, it is possible to identify critical lines that trigger
large-scale power outages. Finally, it is shown that by protecting only a small
number of lines against wind damage, the resilience of the entire grid can be
significantly enhanced.



Zusammenfassung

Das Stromsystem befindet sich momentan in einem grundlegenden Transfor-
mationsprozess, bei welchem fossile Kraftwerke schrittweise durch erneuerbare
Energiequellen ersetzt werden. Dieser Prozess bringt auch Herausforderungen
für die Aufrechterhaltung der Stabilität und Resilienz des Netzes mit sich.
Zum einen ist die Wind- und Solarenergieerzeugung sehr unregelmäßig, was zu
potenziell starken Leistungsschwankungen im Netz führen kann. Gleichzeitig
werden Synchronmaschinen durch Wechselrichter-basierte Erzeuger ersetzt,
wodurch ein Bedarf an netzbildenden Wechselrichterregelungen entsteht, um
die Widerstandsfähigkeit des Netzes gegen kurzzeitige Störungen weiterhin
sicherstellen können. Darüber hinaus muss die Netzinfrastruktur vor extremen
Wetterereignissen geschützt werden, welche mit dem Fortschreiten der Kli-
makrise sowohl schwerer als auch häufiger zu werden drohen.

Der erste Teil dieser Arbeit beschäftigt sich mit der Frage, welchen Einfluss
kurzzeitige Schwankungen der erneuerbaren Energiequellen auf die synchrone
Netzfrequenz haben. Zu diesem Zweck wird eine lineare Antworttheorie für
stochastische Störungen von dynamischen Systemen auf Netzwerken hergeleitet.
Anschließend wird diese Theorie verwendet, um den Einfluss von kurzfristigen
Wind- und Sonnenschwankungen auf die Netzdynamik zu analysieren. Da
die spektrale Leistungsdichte solcher Schwankungen bei niedrigen Frequen-
zen am höchsten ist, wird die Frequenzantwort des Systems von nur einer
einzigen Eigenmode dominiert, welche einer quasi-statischen Veränderung der
synchronen Netzfrequenz entspricht. Während die Frequenzantwort des Netzes
weitestgehend homogen ist, kann außerdem gezeigt werden, dass aufgrund
von Leitungsverlusten die Anfälligkeit für Leistungsschwankungen entlang des
Leistungsflusses zunimmt. Dieser Effekt wurde bereits zuvor in Simulationen
von erneuerbaren Microgrids beobachtet, konnte aber bislang nicht erklärt
werden.

Der zweite Teil der Arbeit befasst sich mit der Modellierung von netz-
bildenden Wechselrichterregelungen. Obwohl in der Ingenieursliteratur schon
eine Vielzahl detaillierter Regelungenskonzepte vorgeschlagen wurden, gab es
bislang kein universelles Modell zur Beschreibung der kollektiven Dynamik
solcher Systeme. Um dies zu erreichen, wird unter Ausnutzung der inhärenten
Symmetrie des synchronen Betriebszustandes eine Normalform für netzbildende
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Akteure abgeleitet. Anschließend wird gezeigt, dass dieses Modell eine gute
Annäherung an typische Wechselrichter-Dynamiken bietet, aber auch für eine
datengesteuerte Modellierung gut geeignet ist. Letzteres wird durch ein Fitting
des Modells an Labor-Messungen eines netzbildenden Wechselrichters gezeigt.

Der letzte Teil der Arbeit befasst sich mit der Analyse des Risikos von
Stromausfällen, welche durch Hurrikans verursacht werden. Hohe Windge-
schwindigkeiten verursachen häufig Schäden an der Übertragungsinfrastruktur,
welche wiederum zu Überlastungen anderer Komponenten führen und damit
eine Kaskade von Ausfällen im gesamten Netz auslösen können. Simulationen
solcher Szenarien werden durch die Kombination eines meteorologischen Wind-
modells sowie eines Modells für kaskadierende Leitungsausfälle durchgeführt.
Die hierbei verwendeten Windsimulationen basieren auf historischen Hurrikan-
Bewegungadaten. Durch Wind verursachte schäden an Übertragungsleitungen
werden stochastisch modelliert und Leitungsüberlastungen mit einer statischen
Leistungsflussanalyse berechnet. Durch Monte-Carlo-Simulationen in einer syn-
thetischen Nachbildung des texanischen Übertragungsnetzes können einzelne
kritische Leitungen identifiziert werden, welche zu großflächigen Stromausfällen
führen. Abschließend wird gezeigt, dass die Resilienz des gesamten Netzes
erheblich verbessert werden kann, indem nur eine kleine Anzahl von kritischen
Leitungen besser vor Windschäden geschützt wird.
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Chapter 1

Motivation & Introduction

1.1 Climate Crisis & the Global Energy Supply

The climate crisis is undoubtedly one of the biggest threats to humanity within
the 21st century and beyond. Since the pre-industrial era, anthropogenic
greenhouse gas emissions have steadily increased and according to the Inter-
governmental Panel on Climate Change (IPCC), it is almost sure that they
have been the dominant cause of the observed warming since the mid-20th
century [93]. This human-induced climate change, which is accompanied by
more frequent and intense extreme events, already has a widespread and severe
impact on natural ecosystems, people, settlements, and infrastructure. Only
substantial cuts in greenhouse gas emissions within the next few decades can
limit global warming and substantially reduce further risks for both humanity
and ecosystems [103]. In 2015, the vast majority of countries negotiated and
ratified the Paris Agreement which sets the long-term goal to ”hold the increase
in the global average temperature to well below 2°C above pre-industrial levels
and to pursue efforts to limit the temperature increase to 1.5 °C above pre-
industrial levels” [135]. Regardless, in 2021 the global CO2 emissions reached
their highest level in history [59].

The major share of global greenhouse gas emissions can be attributed to
the energy-related sectors (73% in 2016) [108]. The energy use in industry
accounts for 24% of the total emissions, including the rather energy intense
manufacturing of iron and steel (7%). The emissions of the transport sec-
tor (16%) are dominated by road transport which accounts for 12%. The
energy used in buildings, comprising electricity, heating, and cooking, accounts
for 18% of the total emissions. To this day, the global energy mix of all
these sectors is dominated by fossil energy sources. Hence, the global primary
energy consumption still heavily relies on the fossil fuels coal (27% in 2019), oil
(33%), and gas (24%), whereas the share of renewable energy sources is only
11%1 [107]. To comply with the Paris Agreement, it is necessary to drastically

1Here, primary energy is calculated using the substitution method that only considers the
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2 CHAPTER 1. MOTIVATION & INTRODUCTION

increase the share of renewable energy sources within the next decades. The
basic strategy for how this could be achieved is threefold:

1. Decarbonizing electricity: Replacement of fossil fuels by renewable energy
sources in the electricity sector.

2. Sector coupling: Electrifying all other energy-related sectors (heating,
transport, industry).

3. Energy sufficiency: Limiting or at least decelerating the growing global
energy demand.

For the complete decarbonization of the electricity sector, there is still
a long way to go. In 2020 the share of renewable energy sources in global
electricity production was still only 29%, compared to a 61% share of fossil
fuels [107]. With almost one sixth of global electricity generation in 2020,
hydropower is by far the largest renewable source of electricity [29]. But while
there is still some potential for further growth in hydropower capacity, it is
certainly not enough to cover the major share of the global energy demand.
Wind and solar on the other hand, account only for 5% and 3% of the global
electricity generation but have a huge remaining potential to grow. By now,
these energy sources have become economically competitive with conventional
energy sources [107]. Particularly, solar is now consistently cheaper than
building new coal and gas power plants in most countries [37]. However, for
speeding up the transition process, it is necessary to abolish subsidies for fossil
technologies and to introduce carbon prices [97].

Concerning the sector coupling, the situation is quite similar: From a tech-
nological perspective there already exist feasible solutions for the electrification
of each sector, yet additional regulatory policies are needed to accelerate the
transformation process. In the transport sector, it will be necessary to shift a
lot of traffic from road to rail, since rail traffic already has a high degree of
electrification. Further, cars with combustion engines need to be replaced by
electric cars as soon as possible. In the heating sector, oil and gas heating has
to be replaced by heat pumps. Some industry and transport sectors, such as the
steel and cement industry as well as shipping and aviation, cannot be electrified
directly. In these sectors, fossil fuels will have to be replaced by green hydrogen
or hydrogen-based synthetic fuels. Here, the term green refers to production
via water electrolysis using renewable energies, in contrast to brown hydrogen,
which is produced by using natural gas as a base material. However, the
production of hydrogen and synthetic fuels involves conversion losses and thus
increases the need for primary energy. Hence, direct electrification is always
cheaper than using hydrogen and synthetic fuels [58] and should therefore be
applied where possible.

amount of usable energy and omits the conversion losses of fossil fuels.
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An often overlooked aspect of the energy transition is energy sufficiency.
To phase out fossil fuels as fast as possible, it is however necessary to limit the
growth of the global energy demand. Since the pre-industrial era, the global
energy demand has been drastically increasing and is still increasing today. This
is due to both a strong growth in the world population as well as an increase
in the per capita energy consumption [107, 80]. Since population projections
indicate a stabilization of the world population within the next century [80], it
would probably be sufficient to limit the global per capita energy consumption.
Given the strong disparity of primary energy consumption between the global
south and industrialized countries [107], particularly the latter have to put a lot
of effort into stabilizing or even reducing their per capita energy consumption.
Some European countries (e.g. Sweden, Germany, Denmark, and the UK)
have already managed to stabilize or slightly reduce their energy demand
from economic growth within the last 25 years2 [107]. However, it should
be mentioned that in 2019 the per capita primary energy consumption in
Germany was still more than twice the global average [107]. Certainly, there
is still a huge potential for saving energy in European or North American
countries, particularly in the heating sector, e.g. by improving the insulation
of houses and by using heat pumps, which are much more energy efficient
than their conventional predecessor technologies [124]. However, introducing
more efficient technologies and using cheaper energy sources always comes with
the risk of rebound effects, i.e. an increase in energy demand. Moreover, the
production of hydrogen and synthetic fuels is very energy intensive and will
lead to a drastic increase in electricity demand [58]. Limiting the overall energy
demand thus remains a difficult task.

1.2 Electricity Infrastructure & the Energy Transi-
tion

In the previous section, I explained how the decarbonization of the global energy
system can be achieved. However, the energy transition is not just a replacement
of fossil fuels with renewable energy sources, it also requires fundamental shifts
in the structure and organization of the underlying infrastructure. This will
most notably be the case for the electricity system which is becoming the
backbone of the whole energy supply. And while there is enough scientific
evidence that 100% renewable energy electricity system is indeed feasible [31],
it remains a great challenge to implement such a fundamental transition within
a time frame of only a few decades while maintaining the security of supply.

Since the electrification in industrialized countries in the late 19th and
early 20th centuries, power generation has been provided by a comparatively

2This even holds for the consumption-based energy use, that adjusts for the energy used
to produce the goods that are imported and exported.
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small number of large conventional generating units, such as coal, gas, and
later also nuclear power plants. Today these conventional generators are for
the most part connected to the high voltage (HV) transmission grid level,
whereas the consumers, both private households and industry, are typically
connected to the mid voltage (MV) and low voltage (LV) distribution grids.
This results in a rather hierarchical structure where not only the majority of
the power producing capacities but also the system control is implemented at
the highest voltage level. Conventional power sources are dispatchable, which
means they have a steady output of power that can be adjusted to the demand.
On the timescale of minutes and hours, power generation is regulated by the
electricity market, whereas on the timescale of seconds, the balancing between
power production and demand is achieved in a decentralized manner by locally
adjusting the power output of each generator proportionally to the changes in
the grid frequency. This so-called primary control is feasible, as the functioning
of AC power systems relies on a self-organized synchronization of all generating
units where the deviation of the synchronous grid frequency from its nominal
value reflects the mismatch between production and demand. Imbalances on
even shorter timescales are buffered by drawing power from the kinetic energy
that is stored in the large rotating masses of the generator turbines and serves
as a momentary reserve.

With the transition towards an electricity system with a major share of
renewable energy sources, some of these structural properties are going to
change drastically. Although there exist offshore wind parks with an installed
capacity similar to a coal or nuclear plant, most renewable generation units are
much smaller and therefore typically installed in the distribution grid levels.
This means that in future grids there will most probably be a much larger
number of generating units and a significant shift of the generation to the
lower voltage levels. Wind and solar generation units are connected to the grid
via inverters. For these power electronic devices, there is no natural relation
between power and frequency and any self-synchronizing and grid-stabilizing
behavior has to be imposed by implementing additional control schemes. To
this day, almost all inverter systems are controlled in a so-called grid-following
mode that neither contributes to the primary control nor the momentary
reserve.

Another important aspect that has to be considered is that wind and solar
power production depends on meteorological conditions and are characterized
by a rather intermittent in-feed on all time scales from seconds to seasons.
At the same time, the electrification of the transport and heating sectors can
lead to higher demand peaks, e.g. due to simultaneous loading of electric
vehicles at certain daytimes, or because of larger heating or cooling energy
demand at certain seasons. Given the increasing variability on both the demand
and production side, the challenge of maintaining the global balance between
power production and power demand at all timescales becomes increasingly
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difficult. Generally, there are three complementary measures to achieve this
goal: integrating more storage capacities, increasing demand flexibility, and
expanding long-distance transmission capacities. Storage technologies on the
shorter timescales (seconds to days) are capacitors, flywheels, and batteries.
Seasonal variations can be compensated by building up reserves of synthetic
gas that can be used as a backup for generating electricity in periods of high
demand and low wind and solar generation [31]. The need for storage capacity
can be reduced by increasing the demand-side flexibility, e.g. in industry and
heating [51, 123]. There are several approaches to implement such demand-side
management, e.g. through direct load control by utility companies (e.g. in
the heating sector) or by real-time pricing on the electricity market [86]. An
expansion of transmission grid capacities is necessary to connect regions of high
production with those of high demand. The investment in new transmission
infrastructure does not only facilitate the balancing of power generation and
demand in the grid but can also lower the overall cost as it allows the installment
of renewable generation units at the most profitable locations. Long-range
connections also reduce the effects of local weather phenomena thereby the
risks from insufficient renewable energy generation in certain areas. Such
connections between different parts of a continental grid or even separate
synchronous regions can be accomplished by using high voltage direct current
(HVDC) lines which have a very low rate of power losses [11]. The integration
of such lines requires inverters, similar to renewable generation units. From the
technical point of view, there is certainly some degree of freedom in whether
to put a stronger focus on the global grid expansion or the integration of local
storage. The different degrees of decentralization come with different economic
costs and social constraints that have to be weighed politically [2].

1.3 Challenges for the Stability and Resilience of
Power Grids

In the previous section, I explained that the transformation of the electricity
infrastructure is an intricate task that therefore requires expertise from various
scientific disciplines. In recent years, some aspects such as the collective
behavior of inverter-based systems, the impact of renewable fluctuations, or the
risk of cascades of line failures have gained interest within the theoretical physics
community, as they can be approached with the methodology of nonlinear
dynamics, statistical physics, and complex systems science [142]. The aim of
this thesis is to continue these approaches to address some of the key challenges
concerning the stability and resilience of power grids with an increasing share
of renewable energy sources under changing climatic conditions. Throughout
the thesis I will particularly focus on the following challenges:

1. Wind and solar power production are fluctuating even on the time scale
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of seconds. Within large wind parks or solar fields, these fluctuations can
be highly correlated and may potentially add up to large fluctuations
that are directly fed into the grid.

2. Synchronous generators will get replaced by a very large number of
inverter-interfaced generation units, which will at least be partially
equipped with a grid-forming control. Due to the lack of a univer-
sal model for the large variety of proposed control schemes, it is difficult
to make general statements about the collective dynamics in such inverter-
dominated grids.

3. As the climate crisis progresses, extreme weather events are becoming
more severe and more frequent. In some regions, this may increase the
risk of large-scale power outages by either imposing conditions where
the transmission system is close to its capacity limits or even by direct
damage to certain grid components.

The thesis is structured as follows. In Chapter 2 I introduce some fundamen-
tal concepts and models for power grids and their components. In Chapter 3 I
derive a linear response theory for dynamical systems on network structures
with stochastic inputs. In Chapter 4 this theory is then used to investigate
the impact of wind and solar power fluctuations on the grid frequency. Here, a
special focus is placed on the role that line losses play in the spreading of these
fluctuations. In Chapter 5 I present measurements and simulations of a small
microgrid setup with both grid-forming and grid-following inverter controls.
Subsequently, I derive a normal form model for grid-forming components from
first principles and show that this is suited to capture the dynamical behavior of
the detailed grid-forming inverter control by fitting the model to measurement
data. Finally, in Chapter 6 I introduce a model for wind-induced cascades of
line failures and present results from Monte Carlo simulations of power outages
in a synthetic grid on the footprint of Texas triggered by hurricane wind fields.



Chapter 2

Modeling Complex Power
Grids

In this chapter, I introduce some fundamental concepts and models for AC
power grids and their components that will be used in the subsequent chapters.
The overview is kept as short as possible, as most concepts are covered in
the standard power system engineering textbooks (e.g. [6, 78, 84, 110]). One
exception to this is the section on inverter control models, a topic that has
gained more attention only recently. Finally, I will also introduce data-based
and randomly generated grid models that will be used in the subsequent
chapters.

2.1 AC Power Systems

Today, the majority of power grids are alternating current (AC) systems.
Historically, AC power systems prevailed over direct current (DC) systems for
mainly two reasons. First, in AC systems it is possible to easily step the voltage
up and down with the help of transformers. This is a major advantage because
power losses at high voltages are much lower and therefore AC transmission
systems have been much more convenient for efficiently transporting power over
long distances. The second advantage is that circuit breaking in AC systems is
much easier. AC voltage inverts several times per second and thus, AC circuits
can easily be disconnected at a zero crossing. DC voltage on the other hand
never crosses zero and therefore sophisticated circuit breakers have to be built
to avoid arcing.

Nevertheless, DC transmission has had a comeback over the last decades,
mainly in the form of high voltage direct current (HVDC) transmission lines.
The integration of such lines into the high voltage level of an existing AC
transmission system was enabled by the development of power electronic devices
that convert between AC and DC. One advantage of these links is that they can
transport power between AC systems that are not synchronized, e.g. between

7



8 CHAPTER 2. MODELING COMPLEX POWER GRIDS

the continental European grid and the British grid. Another important aspect
is that in DC transmission lines there is no reactive power and therefore the
power losses are smaller than in AC transmission lines at the same voltage
level. HVDC lines are therefore particularly suitable for power transmission
over continental scales [11].

Despite these developments, I will mainly focus on AC transmission grids
in this thesis.

2.1.1 3-Phase Systems

Modern power grids are typically 3-phase systems. This means that both
current and voltage signals have three independent phases

uabc(t) =

⎡⎣ua(t)ub(t)
uc(t)

⎤⎦ , iabc(t) =

⎡⎣ia(t)ib(t)
ic(t)

⎤⎦ .

Assumption 2.1 (Balanced Phase). For both voltage and current, the three
phases are balanced such that

ia(t) + ib(t) + ic(t) = 0 ,

ua(t) + ub(t) + uc(t) = 0 .

Remark. The assumption of balanced phases is usually valid as long as no fault
breaks this symmetry, e.g. a phase-to-phase short circuit.

Such a balanced system can be written in terms of a time-dependent
amplitude and a time-dependent phase variable

uabc(t) = V (t)

⎡⎣ cos(ωst+ θ(t))
cos(ωst+ θ(t)− 2π

3 )
cos(ωst+ θ(t) + 2π

3 )

⎤⎦ . (2.1)

Here, ωs is the synchronous frequency of the grid. When the system is in the
steady state, both the amplitude and the angle are constant.

Definition 2.1 (Clarke-Transformation [41]). The coordinate transformation
from the abc-reference frame to the so-called αβγ-reference frame is defined as

Tαβγ =
2

3

⎡⎢⎢⎣
1 −1

2 −1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

⎤⎥⎥⎦ .

Applying the Clarke transform to the balanced system (2.1) yields

uαβγ(t) = Tαβγuabc(t) = V (t)

⎡⎣cos(ωst+ θ(t))
sin(ωst+ θ(t))

0

⎤⎦ . (2.2)
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We see that the third component is always zero and the two independent
components α and β remain. As an alternative representation we can rewrite
(2.2) as a complex signal

uαβ(t) = uα(t) + j · uβ(t) = V (t)ej(ωst+θ(t)) . (2.3)

Definition 2.2 (Park Transformation [95]). The transformation from the
complex αβ-reference frame to the so-called complex dq-reference frame is
defined as

Tdq(ϑ) = e−jϑ .

With this definition, we can easily transform the complex voltage (2.3) into
a reference frame that is co-rotating with the nominal grid frequency

udq = ud + j · uq = Tdq(ωst)uαβ(t) = V (t)ejθ(t) .

We can apply the same transformations to the balanced three-phase current
and get the complex current signal

idq = id + j · iq = I(t)ejϕ(t) .

With these complex definitions of voltage and current, it is also straightfor-
ward to calculate the complex power

S = P + j ·Q = u · i∗ .

Active and reactive power in the dq-reference frame are then given by

P = ud · id + uq · iq ,
Q = uq · id + ud · iq .

2.1.2 Per-Unit System

In electrical engineering, it is common to express the system quantities in the
so-called per-unit system. In this system, all electrical quantities are scaled by
base values. For this, a base voltage Vbase and a base power Sbase are chosen
and all other base values are derived from those two.

Ibase =
Sbase
Vbase

Zbase =
Vbase
Ibase

=
V 2
base

Sbase

Ybase =
1

Zbase
=
Sbase
V 2
base

Base values are real values that are used to scale the magnitude of complex
variables. Phase angles are not affected by the conversion to the per-unit
system.
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Using the per-unit system has several advantages. It makes calculations
easier and can also increase the stability of numerical calculations. But the
main reason for using the per unit system is, that it significantly simplifies the
handling of transformers. It can easily be shown that if the base voltages on
both transformer sides are chosen according to the respective voltage levels,
the per-unit values of voltage, current, and power are the same on both sides.

2.1.3 Ideal Circuit Elements

The electricity grid is composed of different electrical circuit elements. The
dynamical and static behavior of realistic electrical elements can be modeled
by combinations of ideal circuit elements.

Circuit Element (Dynamic) Equation Steady State Impedance

Ideal Resistor u = R · i Z = R

Ideal Inductor L · di
dt = u Z = jωL

Ideal Capacitor C · du
dt = i Z = 1

jωC

Table 2.1: Ideal circuit elements.

Inductive and capacitive elements have a transient dynamical behavior that
is described by the two differential equations in Table 2.1. These so-called
electromagnetic transients (EMT) are usually very fast and settle into a steady
state where both current and voltage phasors oscillate with the nominal grid
frequency ωs and are related by the simple algebraic relation

u = jX · i ,

where X is the capacitive or inductive reactance. This relation is similar to
Ohm’s law for ideal resistors, except for the additional factor j that corresponds
to a phase shift π

2 between voltage and current. As a result, the steady-state
behavior of any electrical component that is composed of the ideal circuit
elements in Table 2.1 can be parametrized by a single complex parameter, the
impedance

Z = R+ jX .

The inverse of the impedance is the admittance Y = Z−1.
In a conventional grid, electromagnetic transients are much faster than the

electromechanical dynamics of the generators such that a time scale separation
can be assumed. For inverter-based grids, this assumption is not necessarily
true and electromagnetic transients might influence the grid stability [85].
However, EMT models drastically increase the number of dynamic equations
and are also much harder to evaluate analytically and will therefore not be
considered in this thesis.
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2.1.4 Grid Structure & Nodal Admittance Matrix

The structure of electrical grids can be represented by a graph. A graph
G = (V, E) is a pair consisting of a set of nodes V and a set of edges E . In
electrical engineering, the nodes are typically called buses and the edges are
called branches. The state of each bus in an AC grid is defined by a voltage
phasor. Components such as generators or loads are connected to one of the
buses in the network. Additionally, each bus can have a connection to the
ground which is commonly called the shunt. Branches on the other hand are
connections between two buses in the grid. Such a connection can either be a
power line or a transformer.

Definition 2.3 (Incidence Matrix). The graph structure of the electrical grid
can be represented by the so-called incidence matrix B ∈ R|V|×|E| which is
defined as

Cij :=

⎧⎪⎨⎪⎩
+1 if j is an outgoing branch from bus i

−1 if j is an incoming branch to bus i

0 else .

The particular definition of this matrix also introduced an orientation of
the branches. The choice of these orientations is arbitrary and corresponds
to a reference frame that defines a flow direction for every branch. Using the
incidence matrix, we can write Kirchhoff’s current law as

i = ish +C · ibr , (2.4)

where i ∈ R|V| is the vector of current injections at the buses, ish ∈ R|V| is the
vector of shunt currents and ibr ∈ R|E| is the vector of branch currents.

In the previous sections, I explained that all branch (and shunt) components
that are composed of ideal resistors, inductances, capacitors, and transformers
can in the steady state and in the per-unit system be described by an admittance
Y . Introducing the diagonal matrices Y sh = diag(ysh) and Y br = diag(ybr),
the shunt and branch currents can be written as

ish = Y sh · ush ,

ibr = Y br ·CT · u .
(2.5)

Definition 2.4 (Nodal Admittance Matrix). The nodal admittance matrix of
the electrical grid is defined as

Y = Y sh +C · Y br ·CT . (2.6)

Inserting (2.5) into (2.4) and using the definition of the nodal admittance
matrix (2.6) yields the following relation between the nodal current injections
and the bus voltages

i = Y · u .
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2.1.5 AC Power Flow Equations

Using the results of the previous section, the complex power at a bus i is given
by

Si = Pi + jQi = ui · i∗i =
∑︂
l

uiY
∗
iju

∗
j . (2.7)

The nodal conductance matrix G and the nodal susceptance matrix B are
defined as the real and imaginary part of the nodal admittance matrix Y

Y = G+ jB . (2.8)

Inserting (2.8) into (2.7) and separating into real and imaginary parts yields
the AC power flow equations

Pi =
∑︂
j

ViVj [Gij cos(θij) +Bij sin(θij)] ,

Qi =
∑︂
l

ViVj [Gij sin(θij)−Bij cos(θij)] .
(2.9)

The state of each bus is determined by the four quantities active power P ,
reactive power Q, voltage magnitude V , and voltage angle θ. To solve the AC
power flow equations, we have to determine which quantities are fixed and
which are free variables for each bus in the grid. There are three different bus
models:

Bus Model Bus Type Fixed Parameters Free Variables

PQ-Bus Load Bus P,Q V, θ

PV -Bus Generator Bus P, V Q, θ

V θ-Bus Slack Bus V, θ P,Q

Table 2.2: Algebraic bus models for solving the AC power flow equations.

Generally, generators are assumed to control their active power infeed into
the grid, as well as the voltage amplitude hence they are modeled as PV -buses.
However, in a grid with nonzero Ohmic line losses, at least one generator bus
has to be modeled as a slack bus. The AC power flow equations only have a
solution if the active power generation by all generators equals the total active
power demand by all loads and the transport losses on the lines∑︂

i∈VG

Pi =
∑︂
i∈VL

Pi +
∑︂
i∈E

P loss
i .

For both PQ and PV buses, the active power P is a fixed parameter. However,
the transmission line losses P loss

i depend on the voltage angles which are the
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solutions to the power flow equations. Hence, there has to be at least one slack
bus in the system that has the active power P as a free variable and which can
therefore balance the uncertainty of the total line losses in the system. Often
the generator with the largest power capacity is chosen to be modeled as a
slack.

2.1.6 Grid Frequency Control

In real power systems, production has to be constantly adjusted to changes in
demand. Due to the electromechanical design of synchronous generators, any
global power imbalance leads to a change in the synchronous grid frequency.
This fundamental property is utilized to control the grid frequency on the
timescale of seconds to minutes in a completely decentralized manner. For this
so-called primary frequency control, each generator adjusts its power linearly
to the change in the global frequency

∆Pi = −Di ·∆ωglobal .

This control scheme is implemented as a droop speed control of the generator
turbine governors with a droop coefficient Di. The ability of generators to
adjust their power is limited by their capacity which is denoted as the spinning
reserve [78].

2.2 Component Models

In this section, I will introduce the models for transmission lines, transformers,
loads, generators, and inverters that will be used throughout this thesis.

2.2.1 Line & Transformer Models

Short transmission lines are typically modeled by the so-called π-model, which
is depicted in Figure 2.1. Here, the term short line means that the line length
is much shorter than the wavelength

λ =
2π

ωs

√
L · C

,

where ωs is the nominal grid frequency and L,C are the per unit length
inductance and capacitance of the line. For typical line parameters, the
wavelength is λ ≈ 6000 km, thus the majority of transmission lines fulfill this
condition [84].

Defining the line admittance Yij and the line shunt admittance Y sh
ij as

Yij = (Rij + j ·Xij)
−1 ,

Y sh
ij = Gsh

ij + j ·Bsh
ij ,
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Figure 2.1: Pi-model for transmission lines. The parameters R12 and X12 are
the line resistance and reactance, Gsh

12 and Bsh
12 are the line shunt conductance

and susceptance.

the currents injected into the line at the buses can be calculated from the bus
voltages as [︃

iij
iij

]︃
=

[︄
Y sh
ij

2 + Yij −Yij
−Yij

Y sh
ij

2 + Yij

]︄ [︃
ui
uj

]︃
.

The power injected into the line at both sides is then given by

Sij = ui · i∗ij ,
Sji = uj · i∗ji .

Typically, in transmission lines, we have R ≪ X and therefore it is often
assumed that the lines are lossless, i.e. R ≈ 0. In that case, the lines are purely
inductive and no active power is lost. Hence, for lossless lines the active power
injections at both sides fulfill the condition Pij = −Pji.

For transformers, we have already seen in Section 2.1.2 that in the per-unit
system the currents and voltages on both sides are the same. As a result, all
transformers can be represented as normal lines and modeled with the π-model.

2.2.2 Load Models

The voltage-dependent load model is defined by an algebraic constraint

0 = (P0 + j ·Q0)

(︃
u

u0

)︃α

− u · i∗ ,

where u0 is the nominal bus voltage, u is the actual bus voltage, i is the
current withdrawn by the load, P0, Q0 are power consumption parameters
and α determines the voltage dependency. For α = 0 there is no voltage
dependence and the power consumption of the load is constant. For α = 1 the
current withdrawn by the load is constant and α = 2 corresponds to a constant
impedance model. The latter is mathematically equivalent to the bus shunts
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introduced in Section 2.1.4. In the engineering literature, a combination of the
three mentioned models is frequently used and known as the ZIP -load model.

In reality, loads are not entirely static and may have a frequency dependence
[55, 78, 84]. However, in this thesis, I will only consider purely algebraic loads
without any frequency dependence.

2.2.3 Synchronous Generator Models

For the dynamics of synchronous machines, there exist a variety of dynamical
models that mainly differ in how much detail of the electromagnetic dynamics
is covered. In this section, I will introduce a fourth-order model show which
simplifying assumptions have to be made to derive the second-order classical
model.

Figure 2.2: Schematic picture of a synchronous generator and its axes.

The position of the rotor d-axis relative to the stator a-axis is given by

γ = ωst+ δ ,

where ωs is the nominals synchronous frequency. I denote the rotor speed
deviation as ω := γ̇−ωs. The mechanical equation of the rotor speed dynamics
in the co-rotating frame is given by the so-called swing equation

δ̇ = ω ,

Mω̇ = Pm − Pe −Dω .
(2.10)

Here, Pm is the mechanical turbine power, Pe is the so-called air-gap power
[78], D is the damping coefficient and M is the inertia constant.
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I denote the complex voltage of grid point to which the synchronous machine
is connected as ug = vge

jθg . Following the convention of most textbooks
(e.g. [84, 110]), the transformation between the armature voltage and the bus
voltage is given by

udq e
j(δ−π

2
) = vg e

jθg ,

idq e
j(δ−π

2
) = ig e

jϕg .

The active and reactive power injected into the grid are

Pg = vdid + vqiq ,

Qg = vqid − vdiq .

The armature voltage is given by the algebraic relation[78][︃
vd
vq

]︃
=

[︃
E′

d

E′
q

]︃
−
[︃
Ra X ′

q

−X ′
d Ra

]︃ [︃
id
iq

]︃
.

Here, Ra is the armature resistance, X ′
d, X

′
q are the transient reactances and

E′
d, E

′
q are the transient electromagnetic fluxes (EMFs). The dynamical equa-

tions for the EMFs is [78]

T ′
d0Ė

′
d = −E′

d − iq(Xq −X ′
q) ,

T ′
q0Ė

′
q = Ef − E′

q + id(Xd −X ′
d) ,

(2.11)

where Ef is the field voltage [78]. The air gap power is given by

Pe = vdid + vqiq +Ra(i
2
d + i2q) ,

and thus, if the armature resistance is small Ra ≈ 0, we get Pg = Pe.

Fourth-Order Model Combining the differential equations of the swing
equation (2.10) and the transient EMFs (2.11) yields the model

δ̇ = ω ,

Mω̇ = Pm − Pe −Dω ,

T ′
d0Ė

′
d = −E′

d − iq(Xq −X ′
q) ,

T ′
q0Ė

′
q = Ef − E′

q + id(Xd −X ′
d) .

(2.12)

Third-Order Model Assuming the d-axis transient EMF to be constant
reduces the model by one order such that

δ̇ = ω ,

Mω̇ = Pm − Pe −Dω ,

T ′
q0Ė

′
q = Ef − E′

q + id(Xd −X ′
d) .
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Second-Order Model Neglecting all electromagnetic dynamics yields the
so-called classical model which is simply given by the swing equation dynamics
(2.10).

2.2.4 Inverter Control Models

To connect DC power sources such as photovoltaic (PV) units or batteries
to an AC grid, the DC signal has to be converted to an AC signal using
power electronic devices called inverters. In these devices, the generation
of a sinusoidal waveform is achieved by a very fast switching using pulse
width modulation (PWM) and an additional low pass filter. The magnitude,
frequency, and phase shift of the sinusoidal signals can be controlled by certain
control schemes. Generally, three classes of control modes for inverters can be
distinguished: the grid-feeding, grid-forming, and the grid-supporting control
schemes [109, 26]. In this thesis, I will focus on grid-feeding and grid-forming
modes. Grid-feeding inverters are controlled such that they inject a specific
amount of power into the grid. This is also called current control mode (CCM).
On the other hand, grid-forming inverters are operated in voltage control
mode (VCM) that controls voltage magnitude and frequency. Additionally to
these inner control loops that determine the inverter mode, there is an outer
control loop that typically is an order of magnitude slower to decouple the
dynamics [26]. Depending on the inverter type, outer control schemes can
for example be a maximum power point tracking (MPPT) control or a droop
control.

To this day, the vast majority of inverter-interfaced units in the grid are
still controlled in grid feeding mode. However, with increasing grid stability
problems due to the ongoing reduction in the number of large conventional
units this is likely to change in a foreseeable future.

Grid-Feeding Inverter For the CCM it can be assumed that the inner
control loop is instantaneous and can thus be viewed as an ideal current source.
With the reference values Pr, Qr for active and reactive power the current is
then given by

idq =
Pr − jQr

u∗dq
.

The transformation between the synchronous reference system of the grid and
the dq-system of the inverter is given by

(ud + juq) e
jδ = |ug| ejθg ,

(id + jiq) e
jδ = |ig| ejϕg .

To synchronize the inverter with the grid, the phase angle δ is determined by a
so-called phase-locked loop (PLL) control which is depicted in Figure 2.3 and
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has the dynamics

δ̇ = ω ,

ω = Kp · uq +Ki · Iuq ,

İuq = uq .

Figure 2.3: Block diagram of a phase-locked loop (PLL).

When the dynamics of the PLL is very fast, the inverter can be assumed
to always be in phase with the grid and can be modeled as a simple algebraic
constraint that feeds a certain active and reactive power Pr, Qr into the grid.
These powers are controlled by an outer control loop, e.g. by an MPPT such
that the maximum available power of the DC energy source (e.g. a PV plant)
is fed into the grid.

Grid-Forming Inverter For the VCM it can be assumed that the frequency
regulation is instantaneous, but the voltage magnitude control has a delay that
is modeled by a PT1-controller [114]

δ̇ = ω ,

τvv̇ = −v + V .
(2.13)

For the outer control loop, it is assumed that a droop control regulates the
frequency ω and voltage magnitude V proportionally to the changes of measured
active and reactive power Pm and Qm in the grid

ω = −Kp(Pm − Pd) ,

V = Vd −Kq(Qm −Qd) .
(2.14)

The measured powers are filtered with a low pass filter [114]

τpṖm = −Pm + Pe ,

τpQ̇m = −Qm +Qe .
(2.15)

The inner control loop is much faster, i.e. τv ≪ τP , and therefore τv ≈ 0.
Combining (2.13), (2.14) and (2.15) then yields the third order equation system

δ̇ = ω ,

τpω̇ = −ω +Kp(Pd − Pe) ,

τpv̇ = Vd − V +Kq(Qd −Qe) .
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Figure 2.4: Block diagram of the outer control loop of a grid-forming inverter.

Neglecting the voltage dynamics reduces the system to a second-order model

δ̇ = ω ,

τpω̇ = −ω +Kp(Pd − Pe) .

Defining the parameters M =
τp
Kp

and D = 1
Kp

, we see that this dynamics is

equivalent to the swing equation (2.10) [113].
If we further assume that the measured power is not filtered, i.e. τp = 0,

reduces the system to a first-order model. For a microgrid with several of
such droop controlled grid-forming inverters [122] inserting the AC power flow
equations (2.9) and for a purely inductive grid Gkl ≈ 0 yields

Dkδ̇k = Pd,k −
∑︂
l

VlVkBkl sin(δkl) ,

which is the dynamics of the famous Kuramoto-oscillator model [70, 71].

2.3 Grid Models

Due to security concerns, the data of real power grid infrastructure is usually
not publicly available. As a result, most scientific studies rely on synthetic
grid data. In the following, I present three different types of synthetic test
cases, that are suited to perform different kinds of studies: Benchmark test
cases consist of a relatively small number of buses but contain very detailed
parametrization. Data-based synthetic grid models come with more realistic
size and grid topology but contain less detail on component parameters. Finally,
randomly generated synthetic grids are well suited for studying the role of the
network topology as well as scaling properties.

2.3.1 Benchmark Test Cases

In the electrical engineering literature, it is very common to use benchmark
test cases. These benchmarks are typically defined by engineering associations
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such as the Institute of Electrical and Electronics Engineers (IEEE) or the
International Council on Large Electric Systems (CIGRE).

Most of the IEEE test cases have been defined decades ago and therefore
they typically only cover HV transmission grids with purely conventional
generation. However, for researching the energy transition and future power
grids, test cases with detailed data on distributed and renewable generation
are urgently needed. One rare example of such a test case is the CIGRE MV
distribution network that includes distributed energy resources such as PV,
wind, batteries, and fuel cells [125].

2.3.2 Data-Based Synthetic Test Cases

The second type of test cases is designed to resemble the structure of a specific
existing power grid by using only publicly available data. The most notable
examples are the European transmission grid models of the SciGRID1 project,
which are built from OpenStreetMap data [81] and the US transmission grid
models provided by the Texas A&M University2 generated from U.S. census
data [24]. Although the grid topology and parametrization do not exactly
match the reality, these test cases can still capture some basic properties and
give informative results, especially for static analyses.

One major problem with these test cases is that their purpose is to resemble
an existing power grid but often come with no or only very limited information
on dynamic parameters such as the inertia or droop control parameter of
generators. Since these parameters have a huge impact on the linear and
nonlinear dynamics, stability, and eigenmodes of the system, the validity of
dynamic simulation results in these grids is quite limited.

2.3.3 Randomly Generated Test Cases

The last type of test cases are randomly generated grid topologies. In complex
network science, there exists a multitude of models for generating random
networks that resemble certain properties of certain real-world networks. Fa-
mous examples are networks with scale-free degree distributions [19] or with
the ’small-world’ property, i.e. a small average shortest path length [140]. A
random growth model that resembles the properties of infrastructure networks
in general and power grids, in particular, was introduced in [117]. The model
generates spatially embedded networks in a two-stage process: In the initializa-
tion phase, a minimum spanning tree for a set of randomly distributed nodes.
In the growth phase, single nodes are added and connected to the grid by
maximizing a function that gives a trade-off between minimizing the spatial
distance and the average shortest path lengths. This model has been shown to
generate networks with topological properties similar to existing transmission

1https://www.power.scigrid.de/
2https://electricgrids.engr.tamu.edu/

https://www.power.scigrid.de/
https://electricgrids.engr.tamu.edu/
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grids, i.e. a low mean degree and a degree distribution with an exponential
tail [94]. Random grids are particularly suited for analyzing the impact of the
grid topology on the resilience or stability of the system by generating large
ensembles of networks with similar properties [101, 91, 89]. The downside of
this model is, however, that it only generates realistic network structures but
does not give any information on the power production and demand or the
dynamical parameters at the nodes. Nevertheless, for analyzing the role of the
grid topology, it is sufficient to randomly distribute consumers and producers
in the grid and to use homogeneous dynamical parameters.



22 CHAPTER 2. MODELING COMPLEX POWER GRIDS



Chapter 3

A Linear Response Theory for
Complex Systems

For complex nonlinear dynamical systems it is usually impossible to perform
any detailed analytical calculations for the entire nonlinear model. However,
many engineered systems are typically controlled such that the system stays
close to a desired operating state. Assuming that the overall system control
performs well enough to keep the system sufficiently close to the operating state,
the system dynamics can be linearized around this state. For the linearized
system, the performance of the system control can then be analyzed with the
help of the well-established theory of linear multiple-input-multiple-output
(MIMO) systems.

A very similar approach is taken in the field of statistical physics, where
nonlinear physical systems are linearized around a stable equilibrium state
to analyze the system’s response to external (often stochastic) perturbations.
Here, special emphasis is placed on the analysis of potential resonances of
the system eigenmodes to the perturbation. In fact, the approaches of linear
response theory and the theory of linear MIMO systems are mathematically
equivalent, albeit complementary in some of their assumptions and in their
typical applications.

For complex systems that have a large number of components and various
interactions with their environment, the space of potential faults and distur-
bances is potentially very large and high dimensional. In control theory, a
typical approach is therefore to perform a rather general and abstract theo-
retical analysis of the system without making any further assumptions on the
detailed nature of the perturbations and instead focus on a worst-case analysis.
Contrary to this, the approach in statistical physics is to reduce the complex-
ity of the system’s interaction with its environment by developing stochastic
models that capture the main features of typical system perturbations.

In this chapter, I develop a linear response theory for complex dynamical
systems on network structures. This theory will be used in the subsequent

23
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chapter to analyze the impact of renewable fluctuations on the grid frequency.
Some of the results presented in this chapter have been published in [99].

3.1 Linear Time-Invariant Systems

First of all, I derive the linear response of a complex dynamical system to
a multi-dimensional perturbation. Subsequently, I introduce the concepts of
signal and system norms that can be used to quantify the response of the
system.

3.1.1 Linear Response Theory

Consider a nonlinear dynamical system of the form

ẋ(t) = f(x(t),u(t)) , (3.1)

where x(t) : R → RN is the system state, and u(t) : R → RM is a perturbation
signal. In many physical systems, we additionally have an observable or output
y(t) : R → RL

y(t) = g(x(t)) ,

that is used to measure the state of the dynamical system.

Assumption 3.1. The unperturbed system has a linearly stable equilibrium
state x◦ such that 0 = f(x◦,0), and the eigenvalues of the Jacobian ∂f

∂x (x
◦,0)

have negative real parts.

Without loss of generality, we can choose a coordinate system relative to
this equilibrium such that x◦ = 0 and y◦ = 0. When the system (3.1) is
perturbed by a sufficiently small signal u the state x and the observable y
will show a dynamic response to the perturbation but stay in the vicinity of
the stable equilibrium. Defining the matrices A ∈ RN×N , B ∈ RN×M and
C ∈ RL×N as

A :=
∂f

∂x
(0,0) , B :=

∂f

∂u
(0,0) , C :=

∂g

∂x
(0) ,

we can conduct a Taylor expansion of the functions f and g up to linear order
and get the linearized dynamics around the equilibrium state

ẋ = Ax+Bu ,

y = Cx .
(3.2)

In control theory, such a system is called a linear time-invariant (LTI) multiple-
input-multiple-output (MIMO) system with input u, state x and output y.
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Definition 3.1 (Response Function). The response function of (3.2) is defined
as

H(t) = Θ(t)CeAtB , (3.3)

where eAt is a matrix exponential and Θ(t) is the Heaviside function.

Using this definition and integrating (3.2) yields the linear response of y to
a perturbation u

y(t) =

∫︂ ∞

−∞
H(t− t′)u(t′)dt′ . (3.4)

Definition 3.2 (Transfer Function). The transfer function of (3.2) is defined
as

G(s) = C(sI −A)−1B . (3.5)

It can easily be shown, that G(s) is the Laplace Transform and G(jν) is
the Fourier Transform of the response function (3.3). Applying the convolution
theorem to the response equation (3.4) yields the linear response in Fourier
space

ŷ(ν) = G(jν)û(ν) .

3.1.2 Signal and System Norms

In this section I will introduce the concepts of signal and system norms, that
will later be used to quantify the linear response of dynamical systems. I will
particularly focus on quadratic norms since these are often easy to evaluate
analytically and therefore also the most commonly used norms in the control
theory literature. For a vector-valued signal y(t) the L2 norm is defined as

∥y∥2 :=

√︄∫︂ ∞

0
yT (t)y(t)dt . (3.6)

Similarly, the L2 norm can also be defined in Fourier space as

∥ŷ∥2 :=

√︄
1

2π

∫︂ ∞

−∞
ŷ†(ν)ŷ(ν)dν . (3.7)

From Plancherel’s theorem it follows, that (3.6) and (3.7) are in fact equal,
i.e. ∥y∥2 = ∥ŷ∥2. Signal norms can be used to quantify the output signal of a
MIMO system for a particular input signal. In contrast to this, system norms
are defined as norms of the response or transfer function and hence give more
general information on the systems response properties. The H2 system norm
is defined as

∥H∥2 :=
√︄∑︂

ij

∥Hij∥2 =

√︄∫︂ ∞

0
tr[HT (t)H(t)dt] . (3.8)
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Inserting the definition of the response function (3.3) yields

∥H∥2 = tr

[︃
C

∫︂ ∞

0
eAtBBT eA

T tdt CT

]︃
.

By defining the matrix X =
∫︁∞
0 eAtBBT eA

T tdt, the H2 system norm can be
written as

∥H∥2 = tr
[︁
CXCT

]︁
.

Using integration by parts, it can be shown that X is the solution to the linear
matrix equation

AX +XAT +BBT = 0 , (3.9)

which is known as the Lyapunov equation [146]. Hence, calculating the H2

norm (3.8) of a linear time-invariant system (3.2) can be achieved by simply
solving the linear algebraic equation (3.9). As for the signal norms, the system
norms in time and in frequency domain are equal, ∥H∥2 = ∥G∥2, where

∥G∥2 :=

√︄
1

2π

∫︂ ∞

−∞
tr[G†(jν)G(jν)dν] .

This equation illustrates that the H2 norm can be interpreted as the average
system gain over all frequencies.

Besides the H2 norm, the other important system norm that is frequently
used in control theory literature is the H∞ norm

∥G∥∞ := sup
ν

∥G(jν)∥2 .

This norm can be expressed in terms of the maximum singular value σ̄ [146]

∥G∥∞ := sup
ν
σ̄(G(jν)) . (3.10)

The singular value decomposition ofG is given byG = V ΣU †, withU ∈ CL×L,
V ∈ CM×M and Σ ∈ RL×M . The diagonal entries of Σ are the singular values

σi =
√︂
λi(G†G) ,

where λi are the eigenvalues of G†G. The singular values correspond to the
gain in a certain input and output direction. Consequently, the maximum
singular value defines an upper bound for the L2 norm ratio of input and
output

∥G(jν)û(jν)∥
∥û(jν)∥

≤ σ̄(G(jν)) .

Hence, the H∞ norm is induced by the L2 norm and can be interpreted as
the worst system gain. However, it should be emphasized that the singular
value decomposition of G(jν) depends on the frequency ν and it is, therefore,
a highly non-trivial task to analytically evaluate the supremum in (3.10) for a
given system.



3.2. STOCHASTIC INPUTS 27

3.2 Stochastic Inputs

In the previous section, I discussed two different edge cases concerning the
inputs of a system. On the one hand, for an exactly known input signal, it is
directly possible to calculate the system output and quantify it in terms of
a signal norm. On the other hand, if there is no given knowledge about the
possible inputs, the system norms can be used to determine either the worst
case or the average frequency gain of the system.

Now let us assume that the exact input signal is not known, yet there exists
some knowledge about its physical nature and statistical properties. This is
typically the case, when the interaction of the system with its environment is
very complex, but still follows certain basic physical laws. In that case, it is
often possible to develop a stochastic model for the interaction of the system
with its environment. In this section I will show that if the correlation or the
spectral density of the input is known, it is in fact possible to calculate L2

norm of the expected system output.

3.2.1 Random Perturbations

Assume that the input function of an LTI system (3.2) is parametrized by a
random variable. Mathematically, such a random variable X is a measurable
function X : Ω → E from the set of possible outcomes Ω called the sample
space to a measurable space E called the state space [120]. In simplified terms,
this can be interpreted as an ensemble of random input signals. For such an
ensemble, the signal norm of a system can be defined as the expectation value
of the L2 signal norm

∥y∥22 := E
{︃∫︂ ∞

0
yT (t)y(t) dt

}︃
. (3.11)

In the following, we will consider the specific case that the input is a random
perturbation of the form

u(t) = u0 · δ(t− t0) , t0 ≥ 0 , (3.12)

where δ is the Dirac delta function and u0 is a random vector, i.e. a vector
whose components are scalar random variables. The output response to such a
perturbation is given by

y(t) =

∫︂ ∞

0
H(t− t′) · u(t′)dt

=

∫︂ ∞

0
H(t− t′) · u0 δ(t

′ − t0) dt

= H(t− t0) · u0

= Θ(t− t0) C eA(t−t0) B · u0 .
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Thus, the random perturbation (3.12) can be interpreted as setting the state
x(t) of the system to a random initial condition x(t0) = B · u0.

Proposition 3.1 (Signal Norm for Random Perturbations). The signal norm
(3.11) of an LTI system (3.2) with a random input (3.12) is given by

∥y∥22 =
∫︂ ∞

0
tr
(︁
H(t) E{u0u

T
0 } HT (t)

)︁
dt . (3.13)

Proof.

∥y∥22 = E
{︃∫︂ ∞

0
yT (t) y(t) dt

}︃
= E

{︃∫︂ ∞

0
uT
0 H

T (t− t0)H(t− t0)u0 dt

}︃
= E

{︃∫︂ ∞

0
uT
0 HT (t) H(t) u0 dt

}︃
= E

{︃∫︂ ∞

0
tr
(︁
H(t) u0 uT

0 HT (t)
)︁
dt

}︃
=

∫︂ ∞

0
tr
(︁
H(t) E{u0u

T
0 } HT (t)

)︁
dt .

Example 3.1 (Gaussian Random Initial Conditions). Assume that each entry
of u0 is a Gaussian random variable with mean zero and variance σ2. Further,
the variables are uncorrelated, i.e. the covariance between different values is
zero. Then we have E{u0u

T
0 } = σ2I and therefore the signal norm is given by

∥y∥2 = σ∥G∥2 .

Example 3.2 (Random Variable Perturbation). Assume k is a random variable
with sample space Ω = {1, . . . ,m} and the elements of the vector u0 are defined
such that

u0,i =

{︄
1 if i = k ,

0 else .

Then we have E{u0u
T
0 } = 1

mI and therefore the signal norm is given by

∥y∥2 =
1

m
∥G∥2 .

3.2.2 Stochastic Processes

In this section we analyze the case that the input of the LTI system (3.2) is
a stochastic process. In the mathematical definition, stochastic processes are
indexed collections of random variables

{x(t) : t ∈ R} .
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In our case, the index t corresponds to the time and we can therefore loosely
interpret this as a time-dependent random variable [47]. We define the signal
norm for the output as

∥y∥2 :=

√︄
lim
T→∞

1

T

∫︂ T

0
yT (t)y(t) dt . (3.14)

In the following, I will use the following notation:

xT (t) =

{︄
x(t) for 0 < t < T ,

0 otherwise.

Definition 3.3 (Cross-Correlation Matrix). Given a vector of stochastic pro-
cess x(t), the cross-correlation matrix is given by

Cxx(t) = lim
T→∞

1

T

∫︂ T

0
xT (t

′)xT
T (t

′ + t)dt . (3.15)

The diagonal elements of this matrix are auto-correlation functions of the scalar
stochastic processes xi(t). The off-diagonal terms are the cross-correlation
functions.

Definition 3.4 (Spectral Density Matrix). Given a vector of stochastic pro-
cesses x(t), the power spectral density matrix is given by

Sxx(ν) = lim
T→∞

1

T
x̂T (ν)x̂

†
T (ν) . (3.16)

The diagonal elements of this matrix are the power spectral densities of the
scalar stochastic processes xi(t) and the off-diagonal terms are the cross-spectral
densities.

From the cross-correlation theorem it follows that the cross-spectral densities
are the Fourier transforms of the cross-correlation functions. A special case is
the Wiener-Khinchin theorem which states that the auto-correlation function
is the Fourier transform of the power spectral density [47].

Proposition 3.2 (Signal Norm for Stochastic Processes). The L2 norm (3.14)
of a linear system (3.2) with a stochastic process as the input is given by

∥y∥2 =

√︄
1

2π

∫︂ ∞

−∞
tr (G(jν)Suu(ν)G†(jν)) dν . (3.17)

Proof. The system output to an input uT is given by

y(t) =

∫︂ ∞

−∞
H(t− t′)uT (t

′)dt′ .



30 CHAPTER 3. LINEAR RESPONSE THEORY

For t > T we have uT (t) = 0 and therefore y(t) = H(t−T )u(T ). If the system
is linearly stable, i.e. all Jacobian eigenvalues have negative real parts, the
output is exponentially declining. The L2 norm for t > T is therefore finite
and hence

lim
T→∞

1

T

∫︂ ∞

T
yT (t)y(t)dt = 0 .

Using this, we can calculate the L2 norm (3.14) as

∥y∥22 = lim
T→∞

1

T

∫︂ T

0
yT (t)y(t) dt

= lim
T→∞

1

T

∫︂ ∞

0
yT (t)y(t) dt

= lim
T→∞

1

2πT

∫︂ ∞

−∞
ŷ†(ν)ŷ(ν) dν

= lim
T→∞

1

2πT

∫︂ ∞

−∞
u†
T (ν)G

†(jν)G(jν)uT (ν) dν

= lim
T→∞

1

2πT

∫︂ ∞

−∞
tr
(︂
G(jν)uT (ν)u

†
T (ν)G

†(jν)
)︂
dν

=
1

2π

∫︂ ∞

−∞
tr
(︂
G(jν)Suu(ν)G

†(jν)
)︂
dν .

Example 3.3 (White Gaussian Noise). Assume that each entry of the input
u is a Gaussian white noise process with variance σ2. The cross-correlation
matrix is then given by Cuu(t) = σ2δ(t)I. Applying the Wiener-Khinchin-
Theorem gives the power spectral density matrix Suu(ν) = σ2I. Then, the
signal norm is given by

∥y∥2 = σ∥G∥2 .
Again, this example clearly illustrates that the H2 norm corresponds to the

signal norm in case of an equal excitation off all frequencies. For auto-correlated
stochastic processes, the power spectral density is not flat and consequently,
some frequencies will be stronger excited than others. Hence, Suu(ν) is not a
constant and solving (3.17) will become difficult and in most cases analytically
impossible. Nevertheless, spectral analysis can be very useful to understand
how a system responds to a certain stochastic input. In the next section, I will
introduce the decomposition of the dynamical system into its eigenmodes and
show that the overlap of the eigenfrequencies with the power spectral densities
of the input determines how strong certain modes will be excited.

3.3 Eigenmode Analysis

In Section 3.1.2 it was shown that the transfer function of a linear MIMO
system can be decomposed with a singular value decomposition and that the
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maximum singular value defines an upper bound for the system output. In this
section, I will introduce an alternative decomposition of the transfer function
into the eigenmodes of the system Jacobian. An advantage of this approach is
that this decomposition does not dependent on the frequency and therefore
it is possible to separate the spatial and frequency dependency of each mode.
With additional knowledge about the spectral properties of the system input,
this approach also allows us to derive additional bounds and estimates for the
system output.

3.3.1 Eigenmode Decomposition of the Transfer Function

Proposition 3.3. The expansion of the transfer function G(s) into the eigen-
modes of the system Jacobian A is given by

G(s) =

N∑︂
n=1

G(n)(s) =

N∑︂
n=1

Cv
(n)
r v

(n)
l B

s− λn
,

where λn are the eigenvalues of the matrix A and v
(n)
r v

(n)
l is the outer product

of the corresponding right and left eigenvectors.

Proof. The matrix A can be factorized as

A = QΛQ−1 ,

where Q and Q−1 are given by the left and right eigenvectors

Q =
[︂
v
(1)
r . . . v

(n)
r

]︂
, Q−1 =

⎡⎢⎣v
(1)
l
...

v
(n)
l

⎤⎥⎦ ,

and Λ is a diagonal matrix whose diagonal elements are the eigenvalues Λnn =
λn. Using this, we can show that

(jνI −A)−1 = QQ−1(jνI −A)−1QQ−1

= Q(jνI −Q−1AQ)−1Q−1

= Q(jνI −Λ)−1Q−1 .

An element of this matrix is given by

[Q(jνI − Λ)−1Q−1]ij =

N∑︂
n=1

QinQ
−1
nj

jν − λn
=

N∑︂
n=1

v
(n)
r,i v

(n)
l,j

jν − λn
,

and therefore

(jνI −A)−1 =

N∑︂
n=1

v
(n)
r v

(n)
l

jν − λn
.
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Corollary 3.3.1. For the response function the eigenmode expansion yields

H(t) =

N∑︂
n=1

Θ(t)eλnt Cv(n)
r v

(n)
l B .

The imaginary part of the eigenvalues corresponds to the frequency of the
eigenmodes, whereas the real part corresponds to the damping.

Example 3.4 (Symmetric System with Homogeneous Inputs & Outputs). For
a symmetric dynamical system A = AT , the eigenvalues are real λn ∈ R and

the eigenvectors are orthonormal v
(n)
l · v(m)

r = δnm. For homogeneous inputs
and outputs B = I, C = I we then have

∥G∥22 =
∫︂ ∞

−∞
tr
(︂
G(iν)G†(iν)

)︂
dν =

∑︂
n,m

∫︂ ∞

−∞
tr

(︄
v
(n)
r v

(n)
l

λn − jν
·
v
(m)
r v

(m)
l

λm + jν

)︄
dν

=
∑︂
n

tr

(︄∫︂ ∞

−∞

v
(n)
r v

(n)
l

λ2n + ν2
dν

)︄
=
∑︂
n

tr

(︄
v
(n)
r v

(n)
l

λn

)︄
=
∑︂
n

1

λn
.

We see that in this example, all cross-mode terms vanish. In general, this
is not the case. The evaluation of all single terms can therefore be quite
cumbersome. However, in the following, I will show that the mode expansion
is still useful for deriving bounds or approximations for the signal norm of the
output.

3.3.2 Single Mode Response Analysis

With the eigenmode decomposition of the transfer function, we can define the
output of a specific mode as

ŷ(n)(ν) = G(n)(jν)û(ν) = V (n) û(ν)

jν − λn
, (3.18)

where I introduced the matrix V (n) = Cv
(n)
r v

(n)
l B.

Definition 3.5 (Spectral Excitation Matrix). The spectral excitation matrix
of a mode n is given by the integral

S(n) =
1

2γn

∫︂ ∞

−∞
k(n)(ν) Suu(ν) dν , (3.19)

where Suu(ν) is the spectral density matrix of the input u and

k(n)(ν) =
1

π

γn
γ2n + (ν − νn)2

(3.20)

is a normalized Lorentz function with its peak at the mode eigenfrequency
νn = ℑ(µn) and the width equal to the mode damping γn = |ℜ(µn)|.
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Using this definition, we can write L2 norm (3.17) of the single mode output
(3.18) as

∥y(n)∥2 =
√︂
tr
(︁
V (n)S(n)V (n)†

)︁
. (3.21)

The spectral excitation matrix defines how strongly a certain mode is
excited by an input with spectral density Suu. The Lorentz function k(n)(ν)
is maximal at the eigenfrequency νn of the mode. Hence, the entries of the
spectral excitation matrix will be large when the spectral densities are strong
at that specific frequency.

In general, the integral (3.19) is hard to compute. For specific functions
Suu(ν) it can be solved with the help of the residue theorem. However, in many
applications the spectral density might not be known analytically. In that
case, we could determine the power spectral density from measurements and
compute the L2-norm semi-analytically. Another possibility is to approximate
the integral by assuming that the spectral density is ”locally flat”, i.e. it does
not increase significantly over the spectral width of the single eigenmodes.
Taking the limit of a spectral width going towards zero, we can approximate
the Lorentz functions as delta functions

lim
γn→0

k(n)(ν) = δ(ν − νn) .

Inserting this into (3.19) yields the ”peak approximation” of the spectral
excitation matrix

S(n) ≈ 1

2γn
Suu(νn) . (3.22)

Example 3.5 (Single input single output system). Assume a scalar input
u(t) with power spectral density Suu that enters the system at the dynamics of
variable xk(t) and the output is given by the single variable y(t) = xj(t). Then,
(3.21) reduces to

∥y(n)∥2 = |v(n)r,j ||v
(n)
l,k |
√︁
S(n) .

Inserting the peak approximation yields

∥y(n)∥2 ≈ |v(n)r,j ||v
(n)
l,k |

√︄
Suu(νn)

2γn
.

3.4 Systems on Network Structures

Many complex dynamical systems are characterized by an underlying network
structure. Mathematically, such networks can be represented by a graph
G = (V, E), with a set of vertices V corresponding to the dynamical subsystems
and a set of edges E corresponding to the coupling of these systems. As shown
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in Section 2.1.4, the topological structure of such a graph can be represented
by an oriented incidence matrix C ∈ R|V|×|E| that is defined as

Cij :=

⎧⎪⎨⎪⎩
+1 if j is an outgoing edge from node i

−1 if j is an incoming edge to node i

0 else .

Here, the terms incoming and outgoing denote the orientation of each edge.
The choice of these orientations is arbitrary and corresponds to a reference
frame which will become important for indicating flow directions on the edges.

3.4.1 Network Laplacians

Another matrix, that is particularly important for describing the dynamics of
diffusively coupled networks, is the Laplacian matrix which is defined as

L := CCT .

By definition the Laplacian is a symmetric matrix and therefore all its eigenval-
ues λi ∈ R. Moreover, it can easily be proven that the Laplacian is a positive
semidefinite matrix and therefore all eigenvalues λi ≥ 0. In fact, there is always
one eigenvalue λ1 = 0. This directly follows from the fact that the sum of
every row and column is zero and therefore the vector v1 = (1, . . . , 1)T always
satisfies Lv1 = 0. It can further be shown, that if the network is connected
(i.e. there exists a path connecting every pair of nodes), λ1 is the only zero
eigenvalue. For connected networks we then have

0 = λ1 < λ2 ≤ · · · ≤ λ|V| .

The second smallest eigenvalue is called the Fiedler eigenvalue or algebraic
connectivity and is a measure of how well connected the network is.

In many real-world applications the edges of the graph have weights, that

represent the flow capacities of the edges in a flow network. Denoting w ∈ R|E|
>0

as the vector of edge weights, we can define a weighted Laplacian matrix as

L = C · diag(w) ·CT .

All properties of ordinary Laplacians that have been discussed above, also hold
for weighted Laplacians.

3.4.2 Dynamics with Diffusive Coupling

Consider a complex dynamical system that consists of a large number of
subsystems. The dynamics of a subsystem i depends on its internal state
variables xi and an interaction pi(x) with the rest of the system

ẋi = f i(xi, pi(x)) . (3.23)



3.4. SYSTEMS ON NETWORK STRUCTURES 35

In many practical applications, the interaction pi(x) has the following two
properties:

1. The interaction of the subsystem with the rest of the system can be
decomposed into a sum of scalar bilateral couplings.

2. The bilateral coupling depends only on the state difference of a single
internal variable.

The first property allows us to represent the system structure as a network. The
second property describes a system with diffusive coupling. The interaction of
subsystem i with the other subsystems can then be written as

pi(x) =
∑︂
j∈Ni

pij(xiq − xjq) . (3.24)

Here, xiq is the qth state variable at the ith node and N (i) is the set of its
neighbors. The scalar coupling functions pij can be interpreted as a physical
flow between i and j.

Assumption 3.2 (Homogeneous Node Dynamics). All dynamical subsystems
have the same dynamics

f i = f j for all i, j .

This is a strong assumption and often not true for realistic systems. However,
only with this assumption we are able to analytically disentangle the local
dynamics of each subsystem and impact of the network structure on the global
dynamics. Investigating the properties of such homogenous systems will also
help us to interpret the numerical results of more realistic heterogeneous
network systems.

Proposition 3.4 (Diffusive Network Jacobian). Given Assumption 3.2, the
Jacobian of the networked system with node dynamics (3.23) and coupling
(3.24) can be written in the form

A = M1 ⊗ I +ML ⊗L , (3.25)

where L ∈ R|V|×|V| is the weighted Laplacian with weights wij =
∂pij

∂xi
q
(q is the

index of the coupling variable) and ⊗ denotes the Kronecker product. The
eigenvalues µ of A are given by the eigenvalues of the matrix

Mλ = M1 + λnML ,

where λn are the eigenvalues of L. The Jacobian eigenvectors v are given by
the Kronecker product of the Laplacian eigenvectors v and the eigenvectors of
ML.
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Proof. Taking the total derivative of the kth component of the right-hand-side
function at the ith node with respect to the lth variable at the jth node yields

df ik
dxjl

=
∂f ik
xil

δij +
∂f ik
∂pi

δlq

(︄
δij
∑︂
n

∂pin

∂xiq
− ∂pij

∂xiq

)︄
.

Define the matrices

[M1]kl =
∂fk
xl

, [ML]kl =
∂fk
∂p

δlq ,

and using the fact that the Laplacian can be written as

Lij = δij
∑︂
n

win − wij ,

yields (3.25). For a right eigenvector of the Jacobian we have:

Avn,m = (M1 ⊗ I +ML ⊗L) un(λm)⊗ vm

= M1u
n(λm)⊗ vm +MLu

n(λm)⊗Lvm

= M1u
n(λm)⊗ vm + λmMLu

n(λb)⊗ vm

= (M1 + λmML) u
n(λm)⊗ vm

= µn,m vn,m

The proof for the left Jacobian eigenvectors can be done similarly.

Example 3.6 (Swing Equation). The dynamics of the swing equation is given
by

θ̇i = ωi

Miω̇i = Pi −Diωi −
∑︂
j

ViVjBij sin(θi − θj)

for every node i in the network. For small angle differences, we can linearize
the sine function and get

Miω̇i = −Diωi −
∑︂
j

Lijθj ,

where L is a weighted Laplacian with weights wij = ViVjBij on a line between
i and j. If we assume homogeneity of the parameters Di = D and Mi = M ,
we can write the Jacobian of the swing equation in the form (3.25) by defining
the matrices

M1 =

[︃
0 1

0 − D
M

]︃
, ML =

[︃
0 0

− 1
M 0

]︃
.
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The Jacobian eigenvalues are given by the eigenvalues of

M1 + λiML =

[︃
0 1

− λi
M − D

M

]︃
,

and hence

µ±,i =
−D ±

√
D2 − 4Mλi
2M

.

For the zero eigenvalue of the Laplacian λ1 = 0 we have µ+,1 = 0 and µ−,1 =
− D

M . The eigenvalue µ+,1 is due to the rotational symmetry in the swing
equation and corresponds to a homogeneous phase shift in all phase angles θi
that does not affect the dynamics of the system. The eigenvalue µ−,1 corresponds
to a homogeneous exponential decay of all frequencies ωi. This is the only
overdamped eigenmode of the system if the Fiedler eigenvalue of the weighted
Laplacian fulfills the condition

λ2 >
D2

4M
.

A linear response theory for the swing equation has been derived for the first
time in [145]. By perturbing the system at different frequencies, the authors
identify three distinct frequency regimes in the response. For low frequencies,
the angular velocities behave as a homogeneous bulk. In the resonant regime,
the frequency of the perturbation overlaps with the eigenmodes of the system
and the response strength of each node is determined by the entries of the
corresponding Laplacian eigenvectors. Finally, for high frequencies, the response
is suppressed and localized, as the response strengths decay as a power law in
frequency and exponentially over the topological distance.

In in the course of this chapter, I have shown that the results found in [145]
can to some extend be generalized to other dynamical models with diffusive
coupling. However, some of the observed phenomena are also specific to the
swing equation model and a certain choice of parameters. The bulk regime
is always existent as the bulk mode that corresponds to the zero eigenvalue
of the Laplacian is always overdamped. However, as shown in Example 3.6,
this is not necessarily the only overdamped mode in the system. For λ2 <

D2

4M
there is more than one overdamped mode in the system and the low frequency
response of the nodes will no longer be homogeneous but is rather determined
by a superposition of the eigenvectors of all overdamped modes. Further, the
resonant regime only exists, if the Jacobian of the network system has complex
eigenvalues. This is not necessarily the case for all diffusively coupled models,
e.g. for networks of classical Kuramoto oscillators [70, 71], where the system
Jacobian is equal to the network Laplacian, which is a symmetric matrix and
therefore always has real eigenvalues (this is also mentioned in the supplemental
material of [145]). But also for the swing equation there exists a parameter

regime where all modes are overdamped. This is the case for λmax <
D2

4M ,
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so either for large damping or for low inertia. Finally, the direct relation of
the node response strengths to the Laplacian eigenvectors is only given in
the case of a homogeneous parametrization in the network. In general, the
response strength of the nodes is determined Jacobian eigenvectors. As shown
in Proposition 3.4, these are only directly related to the Laplacian eigenvectors
for homogeneous parametrization. Hence, for heterogeneous systems, the
response dynamics becomes more complex as it is no longer only determined
by network topology but also by the dynamical parameters at the individual
nodes.



Chapter 4

The Impact of Renewable
Power Fluctuations on the
Grid Frequency

In the previous chapter I developed a linear response theory for complex
systems on network structures with stochastic perturbations. In this chapter
I will apply this theory to analyses the impact of renewable power infeed
on the grid frequency stability using stochastic models for short-term wind
and solar power fluctuations. The intermittent nature of these fluctuations
stems from atmospheric turbulence which are therefore characterized by a
strong autocorrelation and a power-lawed spectral density. It will be explained
how this property results in a much stronger excitation of the low frequency
eigenmodes of the system. Moreover, I will show that the response of the system
is dominated by a single eigenmode that corresponds to a global frequency
fluctuation of the synchronous bulk.

In the analysis, I will place a special focus of the role of Ohmic losses in
the transmission lines, as these have been shown to fundamentally alter the
frequency response pattern in microgrid simulations [14]. In particular, I will
give an analytical explanation for the observation that power fluctuations are
amplified in the opposite direction of the power flow. The existence of this
phenomenon in more realistic systems is confirmed by simulations of wind and
solar fluctuations in the IEEE RTS-96 test case. The results presented in this
chapter have been published in [99].

4.1 Variations of the Grid Frequency

One of the fundamental challenges for the stable operation of power grids is
to maintain the balance between power production and power demand. In
AC power grids, the occurrence of power imbalances leads to changes of the

39
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grid frequency. This relationship stems from the electromechanical design of
synchronous machines which can in its simplest form be described by the swing
equation

Mi ·∆ω̇i = Pm
i − P e

i −Di ·∆ωi .

Here, ∆ωi is the frequency deviation from the nominal grid frequency that
is caused by an imbalance of the mechanical and electrical power Pm

i and
the P e

i . The dynamical transient is determined by the inertia parameter Mi

and the droop control parameter Di. When several synchronous machines
are connected via an electrical grid they can synchronize their frequency in a
self-organizing process. In a synchronous steady state we have ∆ω̇i = 0 and
∆ωi = ∆ωglobal. Assuming the system to be in such a state and summing over
all generators yields

∆ωglobal =

∑︁
i∈VG

(Pm
i − P e

i )∑︁
i∈VG

Di
.

The sum over all electrical powers in the system is determined by total load
demand Pload and the total amount of Ohmic transport losses on the branches
Ploss ∑︂

i∈VG

P e
i = Pload + Ploss .

By denoting the total amount of mechanical powers as PGen =
∑︁

i∈VG
Pm
i we

finally get

∆ωglobal =
PGen − Pload − Ploss∑︁

i∈VG
Di

.

Hence, any persistent global imbalance between power generation, power
demand and transport losses leads to an offset of the global synchronous
frequency. The size of the offset is determined by the sum of all droop
coefficients. In contrast, the inertia parameter determines the rate of change
of frequency (RoCoF) for a sudden change in the power balance. Abrupt
changes of either power demand or generation can induce oscillations around
the synchronous frequency.

In real power grids the grid frequency is fluctuating all the time. These
fluctuations are a result of constantly varying power demand, fluctuations of
renewable energy sources (RES), as well as so-called re-dispatches of the power
in-feed of conventional generators in accordance with trading intervals of the
energy marked [111]. Figure 4.1 depicts a GPS synchronized measurement of
the grid frequency at four different locations in the continental European grid.
Here, it can clearly be seen that this is a synchronized system at continental scale
and that local frequencies only slightly deviate from the (varying) synchronous
frequency.
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Figure 4.1: Data snippet from a GPS synchronized measurement of the grid
frequency at different locations in the continental European grid. The frequency
data is taken from the Power grid frequency database [62, 48]. It has a temporal
resolution of 0.1s and is interpolated with cubic splines.

4.1.1 The Role of Renewable Power Sources

Solar and wind power plants are interfaced with the AC power grid through
DC-AC inverters and AC-DC-AC converters, respectively. For wind turbines
this means that although they are basically electrical generators, the rotors are
non-synchronous with the grid frequency. For such power electronic interfaced
power sources there exists no natural relation between frequency as in the case
of synchronous machines. Any such relation has to be imposed by applying
additional control schemes, such as a droop control. However, to this day
most wind and solar power plants are connected to the grid in a grid-feeding
mode and do not contribute to either the momentary reserve or the primary
frequency control in the grid.

Furthermore, solar and wind power are non-dispatchable, i.e. they cannot
be adjusted to the demand and fluctuate in accordance with the current wind
speed and solar irradiance, respectively. Due to atmospheric turbulence, these
fluctuations are not only present on timescales of hours and days, but also on the
timescale of seconds [8, 83]. A major difference between demand fluctuations
and renewable fluctuations is that as long as there are no such effects as demand
synchronization, e.g. due to real-time pricing in the electricity market[69, 86],
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demand fluctuations are typically uncorrelated. According to the law of large
numbers we can therefore expect them to balance out. For wind power on
the other hand, the correlation of fluctuations at different turbines or panels
within a single wind or solar park are typically quite high and hence, these
fluctuations add up [8]. For offshore wind parks with up to 1GW of installed
capacity, this implies potentially large power fluctuations at a single bus in
the transmission grid. Moreover, these fluctuations can be spatially correlated
over very long distances, given the long-range correlations of wind velocity and
cloud size distributions of ∼600 km and ∼2100 km, respectively [18, 144]. The
most extreme example for a large spatially correlated change solar radiation is
probably the case of a solar eclipse [106].

Replacing conventional power sources by wind and solar power has therefore
two destabilizing effects: First, reducing the number of synchronous machines
in the grid also decreases the number of units that stabilize the grid by
contributing to the momentary reserve and primary control. Second, increasing
the number of intermittent power sources may also increase the level of power
fluctuations that are strongly correlated in space and time.

4.1.2 Performance Measures for Frequency Fluctuations

In many theoretical studies on the dynamics and control of swing equation
networks [133, 134] and the impact of renewable fluctuations on power grids
[131] the frequency dynamics has been quantified in terms of a quadratic
measure of the deviation from the average frequency. Following [7], I denote
this measure as the Synchronization Norm.

Definition 4.1 (Synchronization Norm).

∥S∥2sync = lim
T→∞

1

T

∫︂ T

0

1

N

N∑︂
k=1

(︄
ωk(t)−

1

N

N∑︂
l=1

ωl

)︄2

dt . (4.1)

Remark. The synchronization norm is a special case of the L2 signal norm for
stochastic systems (3.14) with output defined as

y(t) =
1√
N

(︃
IN×N − 1

N
1N×N

)︃
ω(t) .

The synchronization norm has shown to be convenient since it simplifies
some analytical calculations. However, from the point of view of the application
it is not only necessary that the system remains in a synchronized state, but
also should the deviation of the synchronous (average) frequency from the
operating state with a certain nominal grid frequency be as small as possible.
In Figure 4.1 it can be seen that this deviation is in fact typically larger than
the spread between the individual frequency signals. For this reason I introduce
an alternative measure that quantifies the deviation of the system from its
operation point and which I therefore denote as the System Deviation Norm.
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Definition 4.2 (System Deviation Norm).

∥S∥2dev = lim
T→∞

1

T

∫︂ T

0

1

N

N∑︂
k=1

(ωk(t)− ωs)
2dt . (4.2)

Remark. In the co-rotating reference frame of the nominal synchronous fre-
quency ωs, the system deviation norm is a special case of the L2 signal norm
for stochastic systems (3.14) with output defined as

y(t) =
1√
N

ω(t) .

In some cases it might also be interesting not to quantify the deviation for
the whole system but only for a single bus or node in the network. For that I
also introduce the Single Node Deviation Norm.

Definition 4.3 (Single Node Deviation Norm).

∥Sj∥2dev = lim
T→∞

1

T

∫︂ T

0
(ωj(t)− ωs)

2dt . (4.3)

Remark. In the co-rotating reference frame of the nominal synchronous fre-
quency ωs, the single note deviation norm is a special case of the L2 signal
norm for stochastic systems (3.14) with output defined as y(t) = ωj(t).

4.2 Renewable Power Fluctuations

The properties of wind and solar power are determined by the turbulent
processes of the atmosphere dynamics. As a consequence, they are strongly
non-Gaussian and highly intermittent [83, 8]. In the context of turbulent
flows, intermittency means a repeated transition between steady states and
rapid gust. It can be quantified by analyzing the statistics of the increments
∆τx(t) := x(t + τ) − x(t), where x(t) is an observable, e.g. the wind speed
v. For wind power, the relation between wind speed and wind power is given
by P ∝ v3 and thus, the intermittent behavior can also be seen in the power
P . It has been shown for both wind and solar power, that the probability
distribution functions of the power increments ∆τP posses exponential-like
heavy tails for different timescales τ . Extreme events up to 20σt have been
recorded in wind and solar power data, which emphasizes their strongly non-
Gaussian behavior [83, 8]. As previously mentioned, renewable energy sources
are primarily controlled in a grid-feeding mode and therefore intermittent
power fluctuations are fed directly into the grid. In [50] it was shown that
at the subsecond timescale, large frequency increments ∆τf > 2mHz can be
linked to a large in-feed of onshore wind power. A high share of renewable
power sources can therefore have a significant impact on the power quality.
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However, in [116] it was shown, that intermittency plays only a minor role
when assessing the impact of power fluctuations on the grid stability, whereas
auto-correlation was found to be much more important.

In the previous chapter, I introduced Wiener-Khinchin theorem, which
relates the auto-correlation of a time series or a stochastic process to the
power spectral density. The power spectral density of wind and solar power
fluctuations is directly affected by turbulent processes in the atmosphere.
For the relevant atmospheric quantities, such as the wind speed or the solar
irradiance, the power spectrum follows a power law behavior S(f) ∼ fα with
the Kolmogorov exponent α = −5/3 [8]. Further, it can be shown that if the
spectral density of a self-similar signal x scales with a certain exponent α, the
spectral density of x3 will also scale with the same exponent α [83]. Therefore,
the spectral density of wind power fluctuations exposes the same power law
behavior as for the wind speed and therefore also scales with the Kolmogorov
exponent. Similarly, the solar irradiance linearly transforms into solar power
[76] and thus, the spectral density of the solar power fluctuations also exposes a
Kolmogorov scaling. In time series analyses for wind and solar power data, this
behavior has in fact be found for the frequency range 0.001Hz < f < 0.1Hz
[87, 83, 8].

For wind and solar power plants that are located close to each other
are exposed to similar meteorological conditions and therefore the power
fluctuations of these plants can be strongly correlated, as can be seen in
Figure 4.2. Consequently, the small fluctuations of each plant can potentially
add up to fluctuations with larger magnitude. Moreover, in [8] it was shown
that the aggregated power fluctuations in wind parks and solar fields retain a
high degree of intermittency and autocorrelation.

4.2.1 Stochastic Wind Power Model

A non-Markovian for wind power fluctuations was introduced in [116]. In
this model, correlation and intermittency are introduced by coupling two
Langevin-type models as

dx = x

(︃
g − x

x0

)︃
dt+

√
Dx2y dt ,

dy = −γy dt+ dw(t) .

Here, w(t) is a scalar Wiener process and the coupling parameter D controls the
intermittency and correlation of the process x(t). The wind power fluctuation
is then given by multiplying the stochastic process x(t) with a magnitude
parameter pw

δPw(t) = pw · x(t) .

All parameters are determined by fitting the process to measured wind power
data.
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Figure 4.2: Normalized data samples for wind velocity and solar irradiance.
The wind velocity data was recorded in a wind park near Bremen in July 2009.
The plot depicts data samples for two of overall 12 wind turbines. The solar
irradiance data was recorded in June 1993 on the rooftop of the University of
Oldenburg. The plot shows data samples for two of overall 11 sensors. The
sampling frequency for all measurements is 1Hz. The data sets were published
as supplemental material for the publication [8].

4.2.2 Stochastic Solar Power Model

Solar fluctuations are typically even more jumpy than wind fluctuations. This
is mainly due to clouds covering the sun and thereby leading to sudden changes
in the solar irradiance. For modeling solar fluctuations we can therefore use a
jump-diffusion model [9, 10]

dx(t) = D(1)(x, t)dt+
√︁
D(2)dw(t) + ξdJ .

Here, D(1) and D(2) are the drift and diffusion constants and w(t) is a scalar
Wiener process. J(t) is a time-homogeneous Poisson jump process, that is
characterized by the jump rate λ(x, t) and the jump size ξ, which is assumed
to be normally distributed ξ ∼ N (0, σξ). Similar to the case of wind power
model, the solar fluctuation is then given by multiplying the stochastic process
x(t) with a magnitude parameter ps

δPs(t) = ps · x(t) .
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The parameters are determined by fitting the process to measured solar power
data.

4.3 Simulations of an AC Microgrid Model

In this section, I will use the the solar and wind power models that were
introduced in the previous section to simulate renewable power fluctuations
in a conceptual mid voltage (MV) microgrid model. The MV level is a good
testing case for modelling power grids with a high renewable energy share,
since most PV power plants are connected to LV or MV levels. Assuming the
microgrid to be in islanded mode, i.e. there is no connection to a higher grid
level, and consequently it has to be must be internally power-balanced.

I use a synthetic grid model of 100 nodes to represent an average German
grid at medium-voltage (MV) level [13]. The network topology is generated
by the random growth model for power grids [117] that was introduced in
Section 2.3.3. Here, the parametrization is chosen to generate tree-shaped grids
which is a typical structure for distribution grids. The line impedance for typical
MV grids with 20 kV base voltage equals Z = R+ jX ≈ (0.4 + 0.3j)Ω/km [15].
For simplicity all power, voltage and impedance values are transformed into per
unit with a base voltage of 20 kV and a base power of 1MW, which are typical
values for MV grids [15, 118]. The absolute impedance of each line scales with
the geographic distance between linked nodes and consequently differs per link.
Following [15], the average line length is assumed to be 23.7 km.

The nodes in the grid represent an aggregation of all components connected
to a bus at the MV level, including all components in a potentially underlying
low voltage (LV) network. Whether a node is a net consumer or a net producer
depends on the ratio between the overall power demand of the load components
and the overall power production of the generating units at that node.

The microgrid is assumed to be dominated by inverters to analyze a scenario
with high RES penetration. As previously explained, wind and solar power
plants are connected to the grid via inverters. In an islanded scenario, some
of these inverters have to be in a grid-forming mode to ensure grid stability.
Following [113], I assume that the frequency dynamics of the grid-forming
inverters is regulated with a droop control and that they provide synthetic
inertia. As shown in Section 2.2.4 the dynamics is then equivalent to the swing
equation

δ̇i = ωi ,

Miω̇i = −Diωi + Pi − P e
i ,

P e
i =

∑︂
j

ViVj [Gij cos(δi − δj) +Bij sin(δi − δj)] .
(4.4)

The virtual inertia and damping for the network model are determined by
the low-pass filter constant τp,i and the droop control parameter kp,i as Mi =



4.3. SIMULATIONS OF AN AC MICROGRID MODEL 47

τp,i/kp,i and Di = 1/kp,i. Typical parameters for the droop and time constants
of grid-forming inverters are in the range kp = [0.1 s−1 . . . 10 s−1] and τp =
[0.1 s . . . 10 s] [13, 35, 113]. I assume that there are several grid-forming inverters
located at each node and that their collective node dynamics can be aggregated
to a dynamics of the form (4.4).

For the grid-feeding inverters and loads I assume that they can be modeled
as algebraic constraints that simply inject or withdraw a certain amount of
active power into the grid. Therefore, these components do not alter the
dynamics (4.4) but simply the amount of injected power. Since grid-feeding
inverters (and nodes) do not contribute any (synthetic) inertia, the effective
nodes have inertia much lower than nodes fully consisting of grid-forming
inverters would have. For the simulations I therefore use M = 0.1 s2 and
D = 0.01 s.

The net power injected by all loads and grid-forming inverters at a node is
assumed to be constant on the considered time scale and can thus be aggregated
into the parameter Pi. I assume that there are 50 net producers and 50 net
consumers with Pi = ±0.2MW power in-feed. As there is no connection to
upper grid levels, losses have to be compensated locally at each node. Therefore,
the power in-feeds are homogeneously adjusted to balance the line losses in
the operating state P̃ i = (Pi + Ploss/N).

For the grid-feeding inverters, the renewable power fluctuations are directly
fed into the grid and hence, the aggregated power injection at each node
consists of a constant and a fluctuating part

Pi(t) = P̃ i + δPi(t) .

The power fluctuation δPi(t) is a combination of fluctuations signals generated
with the models for wind and solar power fluctuations, that were introduced in
the previous section

δPi(t) = 0.5δPw,i(t) + 0.5δPs,i(t). (4.5)

For the sake of simplicity I only consider single bus fluctuations. A simulation
of multi-node fluctuation would require certain assumptions on the cross-
correlation of renewable power fluctuations at different nodes.

Figure 4.3 depicts an example simulation of the frequency response. It
can clearly be seen that although some node frequencies tend to have a
larger resonances, the frequency dynamics seems to remain remarkably well
synchronized. The largest deviation from the nominal grid frequency results
from an overall fluctuation of the average synchronous frequency itself and
therefore the magnitude of the deviation is about the same order for all nodes.

However, the magnitude of the frequency responses strongly depends on
where the power fluctuations are fed into the network. As depicted in Figure 4.4,
renewable power fluctuations in the consumer-heavy branches of the network
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Figure 4.3: Simulation example for the frequency responses of 25 randomly
chosen nodes to a renewable power fluctuation (4.5) at a single node in the
AC microgrid model.

tend to cause larger frequency responses in the grid. Moreover, the vulnerability
of nodes to renewable power fluctuations increases along the direction of the
power flow in the network. In [14] it was observed that this effect only occurs
if the grid has nonzero resistances.

With the simulation results we can make two substantial observations:

1. The fluctuation of the average frequency is larger than the spread between
the individual frequency signals.

2. Renewable power fluctuations at net power sinks seem to cause larger
frequency responses in the rest of the grid.

In the remainder of this chapter, I will give analytical explanations for these
observations. It will be shown, that the first observation is linked to the highly
auto-correlated nature of wind and solar fluctuations and that the second
observation is a direct consequence of the resistive line losses.

4.4 Transport Losses on Power Lines

In most theoretical studies on the frequency dynamics in power grids the
electrical network is assumed to be purely inductive, i.e. the Ohmic resistance
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Figure 4.4: Network topology of the AC microgrid model. Each node is colored
according to the average frequency deviation that a renewable power fluctuation
at this node causes in the grid.The arrows on the lines indicate the direction
of the power flow.

is Rij ≈ 0. The usual justification for this is that on the high voltage level the
resistance is typically much smaller than the inductance Rij ≪ Xij . However,
in [53] it was shown that even small line losses can fundamentally alter the
nonlinear dynamical behavior of the system and in [14] it was observed that line
losses have a major influence on the response pattern to renewable fluctuations
in AC microgrids. In this chapter, I will give an analytical explanation for
these patterns and show that they originate from the asymmetry that is caused
by the line losses.

The active power flow on a line between two buses i and j is given by

Pij(θi, θj) = ViVj [Gij cos(θi − θj) +Bij sin(θi − θj)] . (4.6)

Neglecting the voltage dynamics, the power flow on the line is a nonlinear
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diffusive function. By the term diffusive I mean that the function depends
only on the state difference of the bus voltage angles Pij = Pij(θi − θj). In
Section 3.4.2 I have shown that for diffusive network systems we can define a
Laplacian matrix that describes the linearized dynamical interaction between
the network nodes. Usually, Laplacians are defined to be symmetric matrices,
with the underlying assumption that the flow on the network branches is con-
served. However, if we consider Ohmic losses, i.e. Rij > 0 the Laplacian matrix
describing the diffusion dynamics on the linear level becomes asymmetric.

Definition 4.4 (Asymmetric Weighted Laplacian). A weighted Laplacian
matrix with elements

Lij = δij
∑︂
l

wil − wij , (4.7)

and weights wij > 0, is called asymmetric, if LT ̸= L.

Compared to the symmetric weighted Laplacian, the asymmetric weighted
Laplacian maintains the properties that the weights are positive and that all
row sums equal zero. From the latter it follows also that they always have an
eigenvalue λ1 = 0 and that the corresponding right eigenvector is homogeneous

v
(1)
r,i = v

(1)
r,j . However, the column sums are generally not equal to zero and

thus, the corresponding left eigenvector is heterogeneous.

Lemma 4.1. For neighboring nodes in tree networks the entries of the left
eigenvector corresponding to λ1 = 0 of the asymmetric Laplacian (4.7) are
related by

v
(1)
l,i

v
(1)
l,j

=
wji

wij
. (4.8)

Proof. For the left Laplacian eigenvector corresponding to λ1 = 0 we have the
condition

0 =
∑︂
i

v
(1)
l,i Lij =

∑︂
i

(v
(1)
l,i wij − v

(1)
l,j wji) =:

∑︂
i

Fij .

For a node j the number of summands is equal to its degree d. In a tree graph
G with size N ≥ 2 there are always at least two nodes with degree d = 1. At
these nodes there is only one summand Fij which therefore has to be zero.
Given the fact that the summands are antisymmetric Fij = −Fji, it follows
that the corresponding summands Fji in the conditions for the neighboring
nodes also have to be zero. This implies that the existence of nodes with d = 1
does not have an impact on the condition at all other nodes in the graph and
we can therefore also analyze the conditions for the reduced graph G′ where
all nodes with d = 1 have been removed. This graph is again a tree that has
nodes with degree d′ = 1. Again, for these nodes the summand Fij and the
antisymmetric counterpart Fji in the condition of their neighbors have to be
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zero. Continuing this procedure, we can step by step reduce the graph and
thereby show that in fact every single summand Fij has to be zero, which
implies (4.8).

For dynamics in AC power grids, the weights wij describe the rate at which
the power flow changes to a certain change in the voltage angle difference

wij =
∂pij
∂θij

.

Inserting the line flow (4.6) yields

wij = |Vi||Vj |[Bij cos(θij)−Gij sin(θij)] . (4.9)

Assumption 4.1 (Voltage Angle Difference). For all power lines in the elec-
trical network the voltage angle difference fulfills the following conditions:

1. |θi − θj | ≤ π
2 .

2. Xij/Rij > tan(θk − θl)

In reality these assumptions are almost always fulfilled. The first condition
is necessary to have a stable operation point [40]. Concerning the ratio of
line inductance and resistance, we typically have Xij ≫ Rij in high voltage
(HV) grids and Xij ∼ Rij in MV grids [109]. In the case of Xij = Rij , both
conditions are fulfilled if |θi − θj | < π

4 . This upper threshold corresponds to a
line load of ∼ 70% of its physical capacity and it usually not exceeded during
normal operation.

Given Assumption 4.1, the weights (4.9) are always positive and we can
define an asymmetric Laplacian matrix (4.7) that describes the dynamical
interaction in the electric grid.

Proposition 4.1. In tree-shaped grids with Ohmic losses Rij > 0, the entries
of the left Laplacian eigenvector corresponding to the zero eigenvalue λ1 = 0
are increasing along the direction of the power flow in the network.

Proof. The Laplacian weights for the active power flow on on a line (4.6) are
given by

wij = |Vi||Vj |[Bij cos(θij)−Gij sin(θij)] ,

wji = |Vi||Vj |[Bij cos(θij) +Gij sin(θij)] .

From the definition of the nodal conductance and susceptance matrix it follows
that

Gij = −
R2

ij

R2
ij +X2

ij

, Bij = −
X2

ij

R2
ij +X2

ij

.
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Assuming that the power flows from i to j, i.e. θi > θj , it follows that
Gij sin(θij) < 0 and therefore wij > wji. Using the result of Lemma 4.1 finally
yields

v
(1)
l,i > v

(1)
l,j .

4.5 Linear Response of the Frequency

In this section I will assume that all node dynamics in the power network are
described by the swing equation and a coupling by an active power flow, as
described in Equation (4.4). Generally, the derivations can also be generalized
to more complex node dynamics (see [99]) but here I will focus on the simple
case of swing equations that captures the essential properties of the frequency
dynamics in power systems.

Defining the parameter vectors d ∈ Rn and m ∈ Rn for the damping and
inertia parameters, the Jacobian of the swing equation can be written as

A =

[︃
0n×n In×n

−M−1L −M−1D

]︃
, (4.10)

with the diagonal parameter matrices D = diag(d) and M = diag(m) and the
weighted network Laplacian L. When considering finite Ohmic losses on the
lines Rij > 0 the Laplacian will be asymmetric, as explained in the previous
section.

When the dynamics is given in the co-rotating reference frame, the syn-
chronous operating state x◦ = [θ◦T , ω◦T ]T ∈ R2n is given by ω◦

i = 0 and the
solution of the AC power flow equations

Pi = ViVj [Gij cos(θ
◦
i − θ◦j ) +Bij sin(θ

◦
i − θ◦j )] .

Now I assume that there is a power fluctuation δP at a single bus in the
system. In order to analyze the frequency response to that perturbation we
can linearize the system around the operating state as x = x◦ + δx which
yields the linear time-invariant (LTI) system

δẋ = A · δx+B · δP ,

y = C · δx ,
(4.11)

where A is the Jacobian (4.10) and δP is the vector of power fluctuations. For
a single bus fluctuation at bus k, the fluctuation is a scalar δP = δP and the
matrix B ∈ R2n×1 is given by

B =

[︃
0

e(k)

]︃
, e

(k)
i =

{︄
1 if i = k ,

0 else .
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For quantifying the frequency response in terms of the single node deviation
norm (4.3), the matrix C ∈ Rn×2n has to be defined as

C =
[︂
0 e(j)

T
]︂
, e

(j)
i =

{︄
1 if i = j ,

0 else .

For the LTI system (4.11) we can apply the linear response theory that was
derived in the previous chapter. From Corollary 3.3.1 it follows that the
response function of the system can be written as

H(t) =

N∑︂
n=1

v
(n)
r,j v

(n)
l,k eµntΘ(t) ,

where µn are the eigenvalues of the Jacobian (4.10) and v
(n)
l , v

(n)
r the corre-

sponding left and right eigenvectors. We see that the left eigenvector determines
how strong a mode gets excited for a perturbation at a certain bus, whereas
the right eigenvector determines how strong the response to that mode is at
each bus. The superposition of all modes gives a particular network response
pattern in the system (see Figure 4.5). In Section 3.3.2 I have shown that the
contribution of each mode to that response pattern can be quantified in terms
of a spectral excitation factor

S(n) =
1

2γn

∫︂ ∞

−∞
k(n)(ν) Spp(ν) dν . (4.12)

Here, Spp is the power spectral density of the power fluctuation δP and

k(n)(ν) =
1

π

γn
γ2n + (ν − νn)2

are normalized Lorentz functions with the mode damping γn = ℜ(µn) and
eigenfrequency νn = ℑ(µn). The power spectral density of solar and wind
power fluctuations are following a power law behavior, i.e. the fluctuations
are much stronger at lower frequencies. Consequently, the spectral excitation
factor (4.12) is then much larger for eigenmodes with lower eigenfrequencies
and those will therefore have a stronger contribution to the response.

For a more detailed analysis I will now make the assumption that the damp-
ing and inertia parameters are homogeneous in the network. In Example 3.6 I
have shown that in this case the Jacobian eigenvalues are given by

µ±,i =
−D ±

√
D2 − 4Mλi
2M

,

where λi are the eigenvalues of the network Laplacian. The mode with eigen-
value µ−,1 = − D

M (corresponding to the Laplacian eigenvalue λ1 = 0) is always
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real and therefore has the eigenfrequency ν−,1 = ℑ(µ−,1) = 0. As a conse-
quence, this eigenmode will always be one of the strongest excited modes in
the network. In fact, if the Fiedler eigenvalue of the weighted Laplacian fulfills
the condition

λ2 >
D2

2M
,

this mode is the only system eigenmode with zero eigenfrequency. For the
microgrid system in Section 4.3 this condition is fulfilled and we even have λ2 ≫
D2

4M , which means that all other eigenmodes will be suppressed compared to the
single overdamped mode, as the power spectral density at their eigenfrequencies
is much lower.

In Proposition 3.3 I have shown that for homogeneous node parameters the
Jacobian eigenvectors can be separated into the eigenvectors of the Laplacian
and the eigenvectors of the internal dynamics. Hence, the spatial response
pattern of the network to a certain mode is fully determined by the corre-
sponding left and right eigenvectors of the Laplacian. The right eigenvector
that corresponding to λ1 = 0 has homogeneous entries and therefore all nodes
exhibit an equal response to the single overdamped eigenmode. The fact that
this mode dominates the system response explains the bulk behavior of the
frequency signals that has been observed in the microgrid simulations (See
Figure 4.3). In the following, I will therefore refer to this mode as the bulk
mode.

Figure 4.5: Node response pattern for the microgrid simulation described
in Section 4.3. The fluctuation (4.5) is applied at the input nodes and the
response is measured at the output nodes in terms of the single node deviation
norm ()4.3). The system deviation norm (4.2) is obtained by averaging over
the output nodes. The ordering of the nodes in this plot is arbitrary.

As shown in the previous section, when there are Ohmic losses on the lines,
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the network Laplacian is asymmetric and its left eigenvectors are heterogeneous.
Consequently, the excitation strength of the bulk mode depends on which node
in the network is perturbed. Since the bulk mode is dominating the system
responds, there is a strong asymmetry between the heterogeneity of the input
and the homogeneity of the output. Figure 4.5 depicts this asymmetry in
the response pattern for the full nonlinear system, the linearized system and
the contribution of the bulk mode. Except for some nonlinear effects at a
few output nodes, the linearized system description is able to capture the
response pattern of the full nonlinear system. Further, it can clearly be seen
that the linear response is dominated by the bulk mode pattern which is in
fact homogeneous in the outputs and strongly heterogeneous in the inputs.

In Proposition 4.1 it was shown that in tree-shaped networks the entries
of the left Laplacian eigenvector corresponding to the zero eigenvalue are
increasing along the power flow. From this, it directly follows that the bulk
mode excitation is stronger at the sinks of the power flow which is exactly what
we have observed in the simulations of the microgrid example (see Figure 4.4).
In the remainder of this section I will try to give an explanation why this is
the case. Suppose there is a single line with Ohmic losses that connects two
buses, one of which is a source and one of which is a sink (see Figure 4.6).
The dissipation on the line has the property that it is monotonously increasing
with the magnitude of the flow, i.e. a larger flow results in higher losses and
vice versa. This means that a change in injected power at the source bus will
partially be compensated by the adjusted amount of dissipation. Conversely,
a change in power drawn at the sink bus requires a larger adjustment at the
source bus to account for the additional adjustment of the dissipated power.
In summary, we can conclude that changes of power are weakened in direction
of the power flow and get amplified in the opposite direction.

Figure 4.6: Effect of Ohmic losses on power flow changes. The sketch shows
an admittance line model composed of a resistive and an inductive element.
Any change of the power flow also causes a change of power dissipation in the
resistive element. The changes on the source side are therefore always larger
than on the sink side of the line.
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It should be mentioned that the described effect does neither necessarily
depends on the tree-like topology nor the details of the node dynamics. It can
therefore be assumed that the observations made in the microgrid simulations
and the linear response calculations are more general. This will be verified in
the subsequent section.

4.6 Simulations in the IEEE RTS-96 Test Case

In the previous sections I had to make some basic assumptions to maintain the
feasibility of the analytical derivations. On the one hand, I assumed that the
dynamics of all buses in the network can be described by the swing equation,
i.e. there are no plain load buses. Moreover, the analytical separation of
internal node dynamics and network interaction necessitated a homogeneous
parametrization of the node dynamics. These are admittedly rather strong
assumptions. In this section it will be shown that the described phenomena can
in fact also be observed in a more realistic grid model. Instead of the simple
microgrid model in Section 4.3 I now apply the single node power fluctuations
(4.5) to the IEEE RTS-96 test case [49]. This HV transmission grid model
consists of 108 branches, including both transmission lines and transformers,
as well as 73 buses of which 30 are generator buses and the rest are plain load
buses.

With its relatively small number of large generating units this test case
resembles a rather conventional power system compared to the renewable
microgrid in Section 4.3. I assume that renewable generation units are located
at the load buses and that these are all in a grid-feeding mode. The loads are
modeled as algebraic constraints that draw a certain amount of power from the
grid. I apply renewable power fluctuations to a single load bus at a time and
measure the frequency response at the generators. The generators are again
modeled by swing equations.

Figure 4.7 depicts the network topology of the IEEE RTS-96 test case.
The color of the load buses indicates how much the generator frequencies
deviate from the nominal frequency when a single bus fluctuation is applied to
that load bus. In contrast to the microgrid model (Figure 4.4) this test case
represents a transmission grid and therefore has a highly meshed grid topology.
Nevertheless, it can clearly be seen that there are significant differences in the
response depending on where the fluctuation is applied. Fluctuations at load
buses in generator dominated regions have much less impact as fluctuations in
load dominated regions. Within these regions, it can further be seen that the
vulnerability to power fluctuations increases along the direction of the power
flow. We can therefore conclude that the observation that power fluctuations
are amplified in the opposite direction of the flow still seems to hold for realistic
power system test cases with meshed topology and heterogeneous dynamical
parameters.
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4.7 Outlook: Multi-Bus Fluctuations & Optimal Con-
trol Schemes

In this chapter, I have only considered single bus fluctuations. For completely
uncorrelated multi-bus fluctuations, the linear response is simply given by the
superposition of of the single bus fluctuations. In large grids with many buses,
it follows from the law that such fluctuations would balance out. However,
as previously mentioned, renewable fluctuations can potentially be spatially
correlated over large distances. To my knowledge there exists no detailed models
for the spatial correlation of wind and solar power fluctuations. Certainly,
it is also a difficult task to developed such models as spatial correlations
can depend on specific meteorological conditions such as cloud sizes or wind
directions. What is known from data analyses on the spatial correlation of
wind power fluctuations [138], is that for large spatial distances of 200 km,
the power fluctuations can still be correlated on the time-scale of hours, but
are uncorrelated for smaller timescales. This indicates that in synchronous
areas of continental scale, the renewable fluctuations on short-timescales can
be assumed to be uncorrelated and hence, if the transport capacity of the
grid is large enough they will probably balance out. However, for smaller
synchronous areas such as microgrids or electrical grids on smaller islands, it
is to be expected that there can be significant spatial correlations and thus,
power fluctuations might add up rather than balance out. Certainly, further
research on multi-bus fluctuations is needed to evaluate the impact of renewable
fluctuations and the effect of spatial correlation in such systems more precisely.
The theoretical findings of this chapter already indicate, that a high degree of
spatial correlation in power fluctuations will probably lead to an even stronger
domination of the bulk mode that basically corresponds to a fluctuating global
power imbalance.

Another important implication of this chapters results is concerning the role
of primary (and secondary) control. The literature debate is often focused on
the aspect that inverter interfaced power sources decrease of system inertia and
the momentary reserve. However, for renewable fluctuations I found that the
system response is dominated by the overdamped eigenmode that corresponds
to quasistatic shifts of the synchronous frequency as a result of global power
imbalances. For such quasistatic behavior, the system inertia is actually of
less relevance than primary and secondary control, which are the central
control schemes for minimizing power imbalances and keeping the system close
to the nominal frequency. Future research should therefore investigate the
optimal design and placement of primary and secondary controllers in the grid.
Although there already exist some studies on that topic [129, 130, 7], they are
always based on using the synchronization norm (4.1) instead of the deviation
norm (4.2) and therefore omit the most dominant mode for the response to
renewable power fluctuations.
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Figure 4.7: Renewable power fluctuations in the IEEE RTS-96 network. The
fluctuations (4.5) are applied at each load bus individually. The load buses are
colored according to the deviation norm of frequency response of the generators
that a fluctuation at that particular bus causes. The arrows on the branches
indicate the direction of the power flow.



Chapter 5

Measuring and Modeling
Grid-Forming Inverters

In the previous chapter, it was assumed that the collective dynamics of the
grid is dominated by dynamical actors that can be described by the swing
equation and that fluctuations of RES are directly fed into the grid due to a
grid-feeding inverter control mode. The analysis was based on a linearization
of the most fundamental nonlinearity in the system, the power flow. Also, the
role of reactive power and voltage dynamics have been completely neglected.

The goal of this chapter is to go beyond these assumptions, both contentwise
and methodologically. In future power grids, the collective dynamics will not
(only) be determined by synchronous machines but also by decentralized grid-
forming inverter control schemes.

Given a decreasing share of synchronous machines, the integration of
inverter controls that are able to regulate voltage and frequency is absolutely
necessary for maintaining grid stability. However, so far grid-forming control
schemes have barely been implemented into the real systems and mainly been
tested in the context of small microgrids.

In this chapter, I introduce detailed models for the outer control loops of a
grid-forming and a grid-following inverter, that have been built at the Tecnalia
research center1. A software implementation of these models is validated with
measurements of a small inverter-based microgrid that have been taken out in
the Tecnalia laboratory.

Modeling the detailed dynamics of inverter controls can be a quite intricate
subject. Contrary to the case of synchronous machines, where a hierarchy
of generator models of different order can be found in any standard power
engineering textbook, the question of which modeling detail is actually needed
to describe the dynamical properties of inverters is an open research question.
Moreover, there exists a large variety of different grid-forming control schemes

1https://www.tecnalia.com
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that have been proposed in the literature.
In order to address these problems, I derive a normal form model from first

principles that is capable of describing the dynamical behavior of any grid-
forming actor. Making use of the fundamental symmetry in the synchronous
operating state and expanding the dynamics in invariant coordinates of that
symmetry preserves the fundamental nonlinearities, including the power flow.

In the last part, it will be shown that the normal form method is also
well-suited for a data-driven modeling approach. Using machine learning
methods, the normal form model can be fitted to a laboratory measurement of
a grid-forming inverter.

All microgrid measurements were carried out with the help of Julia Merino
Fernández and Asier Gil-de-Muro. The comparison of measurements and
simulations has been published in [100]. The normal form approach presented
in this chapter was to a large part developed by Raphael Kogler, while I carried
out the fitting of the model to the measurement data. The results have been
published in [68].

5.1 The Role of Grid-Forming Inverters in Future
Power Grids

To this day the vast majority of wind and solar power plants are connected to
the grid in a grid-feeding control mode and do not contribute to the momentary
reserve of the system. Consequently, the ongoing replacement of large conven-
tional generators by RES reduces the system stability on the seconds timescale.
This problem is more urgent in smaller synchronous areas, such as the Irish
and the British power grid. In Ireland there has for several years been an upper
limit of 50% (and later 55%) for the operation of power electronic interfaced
power sources [42]. In the continental European grid the share of conventional
generation is still comparatively high as there are several countries with large
number of either coal power plants (e.g. Poland) or nuclear power plants (e.g.
France). However, increasing CO2 prices push coal power generation out of
the market [97] and many European countries plan to end coal-fired power
generation by 2030 [28]. Thus, a significant decrease in total system inertia
(TSI) is to be expected during the next decade.

A major concern is that this may lead to severe problems during system
splits in the continental grid [32]. A system split occurs when the synchronous
region is separated due to a failure of all connections between two or more
regions. In 2021 alone, there have been two system splits in the continental
European grid [43, 44]. In these cases, the activation of automatic and man-
ual countermeasures by the transmission system operators (TSOs) prevented
further spreading of failures and large scale outages. In order to preserve the
ability to control such system splits in the future, the amount of momentary
reserve has to be increased substantially over the next years. TSOs therefore
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claim that it is therefore necessary that as soon as possible all newly installed
inverters should be provided with grid-forming control schemes in order to get
a sufficient share of grid-forming inverters by 2030 [1].

However, so far there has only been little research on the collective dynam-
ical behavior of such large number of such grid-forming actors. One major
problem is, that the control schemes thus also the dynamics behavior of these
inverter systems might vary a lot. Contrary to synchronous generators, were
the dynamics of the momentary reserve is to a large extend determined by the
mechanics of large rotating masses and electromagnetic induction, inverters
are power electronic devices with control schemes that can in theory be pro-
grammed arbitrarily. In principle, there are at least three methods, that are
commonly discussed in the literature:

1. Droop Control, a control scheme that imposes a linear relation between
frequency and active power as well as voltage and reactive power [34, 114].

2. Virtual Synchronous Machines, control schemes that emulate the dynam-
ics of synchronous machines [4, 20].

3. Virtual Oscillator Controls, control schemes that emulate the dynamics
of nonlinear oscillators [61, 119].

In the subsequent section, I will exemplarily introduce a particular droop
control scheme that was designed and build at the Tecnalia laboratories.

5.2 Lab Measurements of Inverter Controls

In this section, I will present measurements and simulations of a small AC mi-
crogrid with grid-forming and grid-following inverters. The measurements were
taken out in January 2020 as part of the VALERIA2 project at the microgrid
laboratory of Tecnalia located in Bilbao. The aim of this project was to exper-
imentally validate the power system simulation software PowerDynamics.jl.
More details on the software package are given in Appendix A.2. An overview
of the simulation and measurement results can be found in the technical report
[136] and the paper [100].

5.2.1 Tecnalia Inverter Models

Two inverters were available in the microgrid laboratory. The detailed inverter
controls were designed and self-built by the laboratory staff at Tecnalia [98].
Both inverters can be controlled in either grid-forming mode as a voltage source
inverter (VSI) or grid-following mode as a current source inverter (CSI). The

2Validation of low-voltage energy and renewables integration analysis.
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control designs are very similar to those described in Section 2.2.4 but come
with some additional filters and components.

Due to the high noise level in the microgrid, the current and voltage signals
are filtered by a low pass filter

1

ωci
·
didq,fil
dt

= −idq,fil + idq ,

1

ωcu
·
dudq,fil
dt

= −udq,fil + udq ,

where ωci, ωcu are the cutoff frequencies. The outer control loop for both
control modes is a droop control as given in (2.14). The CSI is synchronized
with the grid by a PLL control as depicted in Figure 2.3.

The VSI slightly differs from the model depicted in Figure 2.4. The low
pass filters for active and reactive power (2.15) are replaced by similar filters
with a transfer function given by [98]

G(s) =
1 + s

n·ωcp

1 + s
ωcp

.

For n→ 1 this filter does not modify the signal, for n→ ∞ it behaves like a
normal low pass filter. Additionally, a so-called fictitious impedance is added
to the droop control, to ensure a decoupling between active and reactive power.
The impedance is built such that it has an inductive behavior for low frequencies
and a resistive behavior for high frequencies [98]

ud,fic = jXfic · idq,fil +Rfic(idq − iiq,fil) .

Both inverter models have been implemented in PowerDynamics.jl3. Details
on the single parameters can be found in the technical report [136].

5.2.2 Measurement & Simulation of an AC Microgrid

Consider a small microgrid with a grid-forming inverter, a grid-following inverter
and a load. The setup is depicted in Figure 5.1.

As an example, we consider a test case in grid-connected mode (switch in
Figure 5.1 is closed) where the active power set point of the VSI is suddenly
changed to a different value and then changed back after a couple of seconds.
The comparison of the measurements and the simulation results is depicted in
Figure 5.2. The system has a transient dynamics and does a little overshoot
before settling into the new steady state. This behavior is similarly captured
in both the simulation and the measurement. The main difference is merely
the strong noise on the measurements.

3https://github.com/JuliaEnergy/PowerDynamics.jl/tree/tecnalia

https://github.com/JuliaEnergy/PowerDynamics.jl/tree/tecnalia
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Figure 5.1: Microgrid setup in the laboratory. By opening and closing the
switch, the system can either be in grid-connected or in off-grid mode. The
line is emulated by a series of resistances and impedances. The inverters
are connected to the rest of the microgrid by transformers. Details on the
parametrization can be found in the technical report [136]. Measurements
of voltage and current are taken at each bus. Due to a limited number of
measurement units, only two phases were measured. A balanced system is
assumed to calculate the third phase.

5.3 The Normal Form for Grid-Forming Actors

The realistic modeling of inverter controls can be a quite intricate subject and
requires detailed knowledge on all underlying control schemes and parameters.
As the field of research is still relatively young and there exists a large variety
of proposed control schemes, it is often difficult to make general statements on
stability and the collective dynamical behavior of a large number of grid-forming
inverters.

In this section, I will therefore introduce a more abstract view on grid-
forming actors in the system. Instead of focussing on specific details of certain
control schemes, I derive a normal form for grid-forming components from first
principles. This approach should serve as a starting point for more generalized
stability analyses of inverter-based grids, as well as for applying model reduction
techniques and data-driven modeling approaches.
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Figure 5.2: Comparison of inverter measurements and simulations. The scenario
is a set point dispatch for the active power at the grid-forming inverter in the
test grid setup shown in Figure 5.1. Voltage and power signals are calculated
from the measured current and voltage signals. The dynamic models for grid-
forming and grid-following inverter have been implemented and simulated in
PowerDynamics.jl. This Figure was first published in [100].

5.3.1 Modeling Assumptions

First of all, we assume that Assumption 2.1 holds, i.e. all 3-phase variables
are balanced. Hence, as already shown in Section 2.1.1, 3-phase voltage and
current have only two independent variables and can be represented as complex
variables

u(t) = v(t)ejθ(t) , i(t) = |i(t)|ejϕ(t) .

In Section 2.2.4 it was explained that grid-forming inverters regulate the
terminal voltage and is therefore also denoted as voltage control mode (VCM).
Hence, in this mode the complex voltage u(t) is a state variable whereas the
complex current i(t) is an external input variable. In the following, we will make
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additional assumptions on the control and dynamical behavior of grid-forming
components that will allow us to derive a generalized model.

Assumption 5.1 (Decentraliced Control). The dynamics of grid-forming
components is coupled only by the complex currents i(t) in the electric network.

This assumption basically means that there exists no additional commu-
nication layer that could transfer information the dynamical states of single
components.

Assumption 5.2 (Internal State Variables). Additionally to the complex
voltage variable u(t), the grid-forming components may have an arbitrary
number N of internal scalar state variables denoted by x(t) : R → RN .

For any internal balanced 3-phase variable z we can define the two scalar
variables ψ := (uz∗ + u∗z)/2 and χ := (uz∗ − u∗z)/(2i) and append these to
the vector x without violating any other assumptions [68].

Assumption 5.3 (Smooth Dynamics). The dynamics of the grid-forming
components is smooth and can be formulated as a system of ordinary differential
equations in terms of the internal states u(t), x(t) and the external inputs i(t).

It is common practice to model an inverter in network studies with con-
tinuous dynamics since the switching frequencies of inverter are typically at
very high (2-20 kHz) compared to the network frequency of 50 Hz [115]. With
these assumptions we can get the following set of equations for the dynamics
of a grid-forming component

u̇ = fu(x, u, u∗, i, i∗) ,

ẋ = fx(x, u, u∗, i, i∗) .
(5.1)

Assumption 5.4 (Symmetry). The dynamics of the grid-forming components
is homogeneous with respect to the phase angles θ.

Mathematically, this means that the right-hand side (RHS) functions in
(5.1) transform as

fu(x, ejθu, e−jθu∗, ejθi, e−jθi∗) = ejθfu(x, u, u∗, i, i∗) ,

fx(x, ejθu, e−jθu∗, ejθi, e−jθi∗) = fx(x, u, u∗, i, i∗) .
(5.2)

In the steady operating state, where u(t) is sinusoidal phasor with a constant
amplitude, this symmetry is obviously fulfilled. However, this may not neces-
sarily be the case for the transient dynamics of the system. For higher order
machine models, such as the fourth-order model (2.12) the dynamics in the d
and q-axis might differ, which is typically the case for salient rotor machines.
However, for grid-forming inverters there is no reason to design a control that
artificially breaks the symmetry between the different phases and consequently,
the relevant control schemes discussed in the literature fulfill Assumption 5.4.
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5.3.2 Normal Form Derivation

For the derivation of the normal form, we will change coordinates to quadratic
invariants of the symmetry (5.2). For this we choose the following set of
physical meaningful quantities

p =
1

2
(ui∗ + u∗i) ,

q =
1

2j
(ui∗ − u∗i) ,

v2 = uu∗ ,

which are the active and reactive power as well as the squared voltage amplitude.
With these, the dynamics (5.1) can be written as

u̇ = f̃
u
(x, u, v2, p, q) ,

ẋ = f̃
x
(x, u, v2, p, q) .

The explicit transformation is given in the appendix of [68]. We see that u is
the only variable left that still depends on the phase angle and therefore, it
follows from the symmetry (5.4) that the dependency from u has to take the
form

u̇ = u · gu(x, v2, p, q) ,
ẋ = gx(x, v2, p, q) .

(5.3)

In the operating state, active and reactive power as well as the voltage amplitude
are determined by the solutions of the AC power flow equation(2.9) p◦, q◦ and
v◦. The state x◦ of the internal variable is determined by an initialization
process [84]. The deviations of the invariants from the operating state are
given by

δp+ jδq = uj∗ − (p◦ + jq◦) ,

δv2 = uu∗ − (v◦)2 ,

δx = x− x◦ .

In order to simplify the notation, we can introduce a vector of invariants
as y(t) := (xT (t), v2(t), p(t), q(t))T . Assuming that the dynamical transients
of the system will not deviate to far from the operational state, we can expand
(5.3) up to linear order

u̇

u
= gu(y◦) + (δy · ∇)gu(y◦) +O(∥δy∥2) ,

δẋ = gx(y◦) + (δy · ∇)gξ(y◦) +O(∥δy∥2) .
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The left-hand side (LHS) of the voltage equation can be separated into real
and imaginary part as

u̇

u
=
v̇

v
+ jθ̇ .

Introducing the constant coefficients Au,x, Bu,x, Cu,x, Gu,x, Hu,x finally yields
the normal form model

u̇

u
= Au +Buδx+ Cuδv2 +Guδp+Huδq ,

δẋ = Ax +Bxδx+ Cxδv2 +Gxδp+Hxδq .
(5.4)

With the assumption that the operating state is a steady state (ẋ = 0), we
can generally assume that Ax = 0. In the co-rotating reference frame where
θ̇ = 0 we further have ℑ(Au) = 0.

The dynamics of any grid-forming actor that fulfils the assumptions in
the previous section can be described by this model, as long as the system is
sufficiently close to the operating state. It should be mentioned that although we
expanded the system dynamics to linear order in the invariant coordinates, it is
nonlinear in terms of the complex voltage and current. Instead of of a linearized
power flow approximation it rather preserves the essential nonlinearities of the
dynamical system.

The exact dynamics of a grid-forming component is determined by the
parameters. Due to the generality of the normal form, the number of parameters
is actually quite large: Au, Bu, Cu, Gu, Hu are complex coefficients and Bu,x,
Cx, Gx, Hx are matrices with N independent entries each. In fact, for most
component models the majority of parameters in normal form representation
will be zero. By determining which parameters are non-zero we can identify
and distinguish certain classes of models that behave similarly or differently.

5.3.3 Relation to other Oscillator Models

In complex system science there exist several fundamental oscillator models that
are frequently used to study general properties of synchronization processes in
networked systems [12]. In this section I will show that these models are in
fact special cases of the normal form (5.4).

Kuramoto Model For pure phase oscillators the amplitude is constant
vi = Vi and therefore the dynamics is given by u̇i

ui
= jθ̇i. Further, there are no

internal state variables x(t) and hence, the remaining equation of the normal
form reads as

u̇i
ui

= Au
i +Gu

i δpi +Hu
i δqi .

In the co-rotating frame of the synchronous frequency we have Au
i = 0. Further,

we can assume that the dynamics of single oscillators is coupled only by active
power (Hu

i = 0) in a purely inductive network. Inserting the AC power flow
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equations (2.9) and setting Gu
i = −jD−1

i yields the Kuramoto model with
heterogenous coupling

θ̇i = ωi −
∑︂
j

Kij sin(θi − θj) ,

where ωi =
p◦i
Di

is the eigenfrequency of oscillator i and Kij =
ViVjBij

Di
is the

coupling strength to oscillator j. In Section 2.2.4 I have shown that this
model describes the dynamics of simple droop controlled inverters in a purely
inductive microgrids [122].

Inertial Kuramoto Model Phase-frequency oscillators also have a constant
amplitude vi = Vi, but the frequency ωi(t) is an additional internal state
variable. The normal form representation reads as

u̇i
ui

= Au
i + jδωi ,

δω̇ = Bω
i δω +Gω

i δpi +Hω
i δqi .

In the co-rotating frame of the synchronous frequency we have Au
i = 0. Again,

we can assume that the dynamics of single oscillators is coupled only by active
power (Hu

i = 0) in a purely inductive network. Inserting the AC power flow
equations (2.9) and setting Bω

i = −Di
Mi

, Gu
i = −M−1

i yields the Kuramoto
model with inertia and heterogenous coupling

θ̇i = δωi ,

Miδω̇i = p◦i −Diδωi −
∑︂
j

Kij sin(θi − θj) .

Here, I defined the coupling strength as Kij = ViVjBij . The Kuramoto model
with inertia is mathematically equivalent to a system of swing equations coupled
by a purely inductive network [46]. In Section 2.2.4 I have shown that an AC
microgrid with droop controlled inverters and virtual inertia can be described
by this model [113].

Stuart-Landau Model For phase-amplitude oscillators without any internal
state variable, the normal form representation is given by

u̇

u
= Au + Cuδv2 +Guδp+Huδq . (5.5)

For Au = 1+ jωi and C
u = 1 we get the dynamics of the Stuart-Landau model

[3, 121, 79]. It should be mentioned though, that the coupling of the oscillators
that is represented by δp, δq is multiplicative, whereas in most studies on
phase-amplitude oscillators the coupling is chosen to be diffusive.
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With the additional assumption that the phase dynamics is coupled by the
active power (Gu ∈ j R) and that voltage dynamics is coupled by reactive power
(Hu ∈ R), (5.5) describes the dynamics of a virtual oscillator control (VOC),
which is an alternative control scheme for grid-forming inverters [61, 60, 119].

5.3.4 Normal Form of a Droop Controlled Inverter

In Section 2.2.4 I derived the following model for a droop controlled VSI with
virtual inertia

δ̇ = ω − ωd ,

τpω̇ = ωd − ω +Kp(Pd − p) ,

τpv̇ = Vd − v +Kq(Qd − q) .

(5.6)

The equations for phase δ and frequency ω are equivalent to the swing equation
and can directly be represented in the normal form (5.4) as described in the
previous section. For the amplitude dynamics we have

ℜ
(︃
u̇

u

)︃
=
v̇

v
=

1

τpv
[Vd − v +Kq(Qd − q)]

=
Vd
τpv

− 1

τp
− Kq

τpv
(Qd − q) .

Expanding this equation in the invariants v2(t) and q(t) at around (v◦)2 = V 2
d

and q◦ = Qd yields
v̇

v
≈ − 1

2τpV 2
d

δv2 − Kq

τpVd
δq ,

and hence, we get the following normal form parameters for the amplitude
dynamics

Cu = − 1

2τpV 2
d

, Hu =
Kq

τpVd
.

An overview of all normal form parameters for the inverter model (5.6) are
shown in Table 5.1. Figure 5.3 depicts a comparison of the voltage amplitude,
voltage angle and frequency trajectories for the full model and the normal form
approximation.

A B C G H

u jωd j −(2τpV
2
d )

−1 0 −(τpVd)
−1Kq

ω 0 −τ−1
p 0 −τ−1

p Kp 0

Table 5.1: Normal form parameters of a droop controlled inverter with virtual
inertia. In the co-rotating frame Au = 0.
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Figure 5.3: Transient of a droop controlled inverter and its normal form
approximation. The inverter is connected to a slack node. In the time frame
between the vertical dashed line the power setpoint of the inverter is changed
to a much smaller value.4

5.4 Data-Driven Normal Form Modeling

In the previous section, I exemplarily derived the normal form representation
of a droop-controlled voltage source inverter (VSI). However, in practical
applications the exact parametrization or even the details of the control loops
might be unknown, e.g. for commercial inverter systems. In that case, the
dynamical properties can only be obtained through measurements.

In this section I will show that the normal form is in fact very well suited
for a grey box modeling approach, by determining model parameters through
data. I demonstrate this by using tools of scientific machine learning to fit
the normal form model to measurement data of the Tecnalia VSI that was
introduced in Section 5.2.1.

5.4.1 Inverter Measurements

The test system setup for the measurements slightly differs from the microgrid
test case in Section 5.2. Now, I consider only a single inverter in grid-forming
mode. Instead of a grid connection, the system is now connected an AC power
source. The source behaves like a slack bus as long as the power output is

4The implementation can be found at: https://zenodo.org/record/4881898

https://zenodo.org/record/4881898
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positive. The power consumption of the load is chosen large enough such that
this is always guaranteed. The advantage of the power source is that it provides
a power supply for the test system at a much lower noise level than the grid
connection. Additionally, it is possible to directly control the voltage level and
the frequency of this AC source. The setup is depicted in Figure 5.4.

Figure 5.4: Laboratory setup for measuring VSI dynamics. The AC power
source at bus 1 is controlled such that it provides a constant AC voltage signal
at a certain voltage level and frequency. The line is emulated by a series of
resistances and impedances. Details on the parametrization can be found in
the technical report [136]. Measurements of voltage and current are taken at
bus 3.

I consider a test scenario, where the frequency at the power source is
stepped down and back up again several times with ramps of decreasing slope.
Measurements are taken directly at the inverter terminal. I calculate the
complex current and power in the co-rotating frame of the initial frequency
ωs = 2π · 50 Hz as described in Section 2.1.1. As long as the frequency is equal
to ωs the voltage and current signals will be constant. When the frequency
is stepped down the signals will start to oscillate. The measured signals for
complex current and voltage as well as the calculated active power are depicted
in Figure 5.5.

As explained earlier, grid-forming inverters are in a so-called voltage control
mode (VCM), which means that the complex voltage is a internal state variable
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Figure 5.5: Measured time series for complex current and voltage at the grid-
forming inverter in the Tecnalia laboratory. The oscillations correspond to
shifts in the frequency of the power source. (See Figure 5.4.) The base voltage
is Vbase = 4 kV and the base power is Sbase = 10 kW.

wheres the complex current is an external input variable. Consequently, we can
consider the inverter in our test system as a black box input-output-system
with the complex current signal as the input data and the complex voltage
signal as the output data. In the subsequent section, it will be explained
how the normal form model (5.4) can be fitted to this data by using machine
learning methods.

5.4.2 Model Fitting

I assume that the inverter provides some kind of virtual inertia and choose
a normal form model with a single internal variable, the frequency ω. This
yields a third order model which reads as

u̇

u
= Au +Buδω + Cuδv2 +Guδp+Huδq ,

δω̇ = Aω +Bωδω + Cωδv2 +Gωδp+Hωδq .
(5.7)

For Tecnalia inverter we know that it contains additional dynamic filters and
thus, it actually has a higher order dynamics. However, we will see that the
third order normal form is good enough to sufficiently capture the measured
dynamic behavior.

For the fitting of the normal for model to the measurement data I use a
two-step procedure: First, a linear regression is performed to obtain a rough
parameter estimate. In the second step, a fine-tuning of the parameters is
achieved by using more sophisticated scientific machine learning tools.

For the linear regression, I first calculate the invariant quantities active
power p(t), reactive power q(t), and the squared voltage amplitude from the
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measured current and voltage signals. The frequency ω can be obtained by a
numerical differentiation of the voltage phase angle. The measurements have
a temporal resolution of ∆t = 1 ms and a length of T ∼ 80s so that each
measured signal consist of T/∆t ∼ 80, 000 data points. For each time step the
LHS and RHS of equation (5.7) have to be equal. The differentials on the LHS
of the equation can again be determined by numeric differentiation. We can
separate the complex voltage equation into its real and imaginary parts and
get the linear matrix equation⎡⎢⎢⎣

ℜ
(︂
u̇(0)
u(0)

)︂
. . . ℜ

(︂
u̇(T )
u(T )

)︂
ℑ
(︂
u̇(0)
u(0)

)︂
. . . ℑ

(︂
u̇(T )
u(T )

)︂
δω̇(0) . . . δω̇(T )

⎤⎥⎥⎦ =

⎡⎣ℜ(Au) ℜ(Bu) ℜ(Cu) ℜ(Gu) ℜ(Hu)
ℑ(Au) ℑ(Bu) ℑ(Cu) ℑ(Gu) ℑ(Hu)
Aω Bω Cω Gω Hω

⎤⎦
⎡⎢⎢⎢⎢⎣

1 . . . 1
δω(0) . . . δω(T )
δv2(0) . . . δv2(T )
δp(0) . . . δp(T )
δq(0) . . . δq(T )

⎤⎥⎥⎥⎥⎦
I solve this equation for the parameter matrix by using Julia’s [23] backslash
operator5 that gives a minimum-norm least squares solution computed by a
pivoted QR factorization and a rank estimate of based on the R factor.

For the parameter fine tuning I make use of Julia’s differentiable pro-
gramming capabilities that allow to compute gradients of differential equation
solutions with respect to the equation parameters. The normal form model
(5.7) is numerically integrated with Tsitouras’ 5th order (Tsit5) method [132]
using the DifferentialEquations.jl package [105]. Here, the current signal
is interpolated with linear splines to get a continuous input function. I define
a loss function that quantifies the distance between the simulation model and
the measurements as

Loss =
∑︂
i

wr|ℜ(∆u(ti))|η + wi|ℑ(∆u(ti))|η

+ wω|∆ω(ti)|η + wv|∆v(ti)|η) .

Here, the ∆ denotes the difference between measured and simulated quantities
and w, η are tuning parameters. The loss function is minimized in a stochastic
gradient descent using the DiffEqFlux.jl [104] package and the the ADAM

solver [64]. I tried different tuning parameters for the loss function and finally
chose η = 1, wω = wr = wi = 1 and wv = 10 which yield a visually good fit of
the model to the measured data. The results are depicted in Figure 5.6, that
shows the fit to measurement data and a validation with data of a different
test run. The fitted parameters are given in Table 5.2.

5https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/

https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/
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A B C G H

uℜ 3.97 -0.01 -4.42 -0.17 0.01

uℑ -0.10 0.88 -0.42 -0.36 0.53

ω 1.00 -0.96 -5.46 -3.08 4.73

Table 5.2: Fitted parameters for the normal form representation of the Tecnalia
inverter.

5.5 Outlook: Further Normal Form Applications

I have shown that this normal form model is capable of capturing dynamic
behavior of a single realistic grid-forming inverter. However, the approach is
based on rather general assumptions and it might also be used to model the
dynamics at a bus with several dynamic components or even an entire sub-grid
that is dominated by grid-forming actors.

In [54] the concept of probabilistic behavioral tuning was introduced. The
basic idea is to define a distance measure between the dynamics of a complex
system and those of a much simpler specification. It has been shown that this
theoretical concept can, with the help of Julia’s scientific machine learning
tools, be used to tune the control of distributed generating units such that
the collective dynamics fulfills some specification [33]. This approach might
also be used to apply it to a sub-grid of components that can be represented
by the normal form to tune them to behave like a single normal form actor.
Such an aggregation control concept could potentially be helpful to reduce the
complexity in grids with a very high number of generation units and distributed
control schemes, i.e. in the context of cellular microgrids.

Instead of modeling the dynamics of individual inverters or even entire
sub-grids, it would also be conceivable to use the normal form on a much smaller
scale, i.e. for modeling sub-components of inverter controls. In Section 2.2.4
we assumed that there is a time scale separation between the inner and outer
control loop of a grid-forming inverters and that the inner loop can therefore
be modeled by only a simple first-order filter. However, when the dynamics on
much higher faster timescales is needed, e.g. for EMT models, this would also
require a much more detailed dynamical model of the inner control loop. For a
commercial VSIs, it can be assumed that there is even less information on the
detailed setup and parametrization given and therefore this would be another
perfect application for the data-driven normal form approach. Alternatively,
the normal form could in this context also be a good starting point for applying
model reduction techniques and to derive a hierarchy of dynamic inverter
models with different modeling detail.
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Figure 5.6: Fitting and validation of the normal form model (5.7.) The upper
plot shows the fit of the model (blue) to the measured data (orange) of the
Tecnalia inverter. The lower plot depicts a validation of the model with the
fitted parameters for the measured data of a different test run.



76 CHAPTER 5. GRID-FORMING INVERTERS



Chapter 6

Hurricane-Induced Cascades
of Line Failures

In the previous chapters, I analyzed the challenges of maintaining a stable
operation of power grids with regard to an increasing share of renewable power
generation. In this chapter, I will shift the focus towards an analysis of the
resilience of power grids against extreme weather events.

Electrical grids are considered to be critical infrastructure as many other
sectors such as industry, the health system or food supply heavily rely on it.
The importance of the electricity sector is even further increasing as other
sectors, such as mobility and heating, are becoming more and more dependent
on electricity. Extreme weather events are one of the biggest threats to this
infrastructure. In the U.S., weather-related events account for almost 45% of
large-scale outages with at least 50,000 customers affected [56]. Moreover, as
the climate crisis progresses extreme weather events are expected to become
both more frequent and more intense [45].

The causes of extreme weather-related grid incidents are manifold and
sometimes difficult to foresee. For example, in July 2021 there was a system
split between the Iberian Peninsula and the rest of the continental European
grid. The presumed cause of this incident was a forest fire during a heatwave
that affected two transmission lines. The smoke and a large concentration of
thin particles reduced the insulating capacity which caused short circuit failures
and eventually a tripping of the lines [43]. Another extreme weather-related
incident occurred in February of the same year when severe winter storms in
Texas forced the transmission grid operators to shut down parts of the grid to
prevent a complete failure. All types of power plants were impacted by the
winter storms and failed to operate at their expected electricity generation
output levels. The major reason was, however, that natural gas production,
storage, and distribution facilities failed to provide the full amount of fuel
demanded by natural gas power plants due to a direct freezing of natural gas
equipment [63].

77
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From these examples it is evident that the prediction and modeling of such
events is an extremely difficult task that requires a transdisciplinary approach,
combining both meteorological models and models of the complex power grid
infrastructure. As an exemplary study case for such an approach, we develop
a model for analyzing the risk of wind-induced power outages to study the
impact of hurricanes on the power grid infrastructure in the southeast US.
The major reason for selecting this study case is the availability of models
and data for tropical cyclones as well as synthetic test cases of the electricity
grids in the affected areas. Another reason is that there are indeed regular and
sometimes widespread power outages during major hurricane events which are
fairly well documented. Usually, these outages are caused by damages to the
transmission infrastructure, i.e. transmission towers and lines. The outage of
certain transmission lines can cause overloads in other lines, potentially leading
to a cascade of failures. Hence, there is a risk of large-scale blackouts even in
regions that have not been directly affected by the respective hurricane.

The model for wind-induced cascading failures presented in this chapter
has been developed in collaboration with Julian Stürmer and Mehrnaz Anvari.
The simulations were carried out by Julian Stürmer as part of his Master thesis
which I co-supervised [126]. All hurricane wind field data has been generated
and provided by Thomas Vogt from the Event-Based Impact Modeling group
at the Potsdam Institute for Climate Impact Research. Results of this project
have been previously published in [127, 128].

6.1 Hurricanes & Transmission System Resilience

U.S. states on the Atlantic coastline are almost annually affected by the
landfall of tropical cyclones. Figure 6.1 depicts the tracks of a number of
notable tropical cyclones that made landfall in Texas and its neighboring
states. Corresponding information on these tropical cyclones is gathered in
Table 6.1. When a tropical cyclone has a maximum sustained wind speed of
at least 33m/s, it is classified as a hurricane [88]. Below this threshold they
are classified as tropical storms. Hurricanes can reach sustained wind speeds
of more than 70m/s [88]. Such extremely high wind speeds are capable of
significantly damaging the power transmission infrastructure. These damages
include the breaking of transmission line cables, short circuits through contacts
of trees, or even the destruction of the transmission towers that carry the lines.
Generally, power grids are operated according to the N − 1 criterion, i.e. the
outage of a single grid component must not cause a violation of security limits
in any other component. However, strong hurricane events will typically cause
damages of several lines and may thereby cause overloads in other lines that
will eventually trigger a cascade of line failures leading to large scale outages.
Accordingly, hurricanes and extreme wind conditions have been identified as
one of the most significant factors for power outages [102].
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Name Year Category vm [m/s] Nout [106] Report

Claudette 2003 1 40.07 0.074 [22]

Erin 2007 TS 22.36 0.020 [65]

Ike 2008 2 48.91 3.200 [21]

Hermine 2010 TS 29.95 0.230 [16]

Harvey 2017 4 51.05 1.670 [27]

Hanna 2020 1 37.01 0.200 [30]

Laura 2020 4 55.65 0.139 [96]

Table 6.1: Information on past hurricanes in Texas. The category indicates the
hurricane intensity at landfall according to the Saffir-Simpson hurricane scale
(”TS” stands for tropical storm). The parameter vm is the maximum 10-minute
sustained wind speed. The data is obtained from the simulations described in
Section 6.2.2. Nout is the reported number of customers left without power
supply. This data is gathered from news reports (see [126]).

6.2 Model for Wind-Induced Cascading Failures

In this section, I will introduce a model for wind-induced cascading failures.
The wind fields are generated by using historical hurricane tracks and a
hurricane pressure-wind field model. Wind-induced transmission line damages
are modeled by a stochastic line fragility model. These line damages can trigger
cascades of branch overload failures that potentially cause large-scale blackouts
in the grid. For this, I introduce a cascading failure model that comprises the
DC power flow equations, a model for branch flow overloads, and a mechanism
for active power balance control. The combined model is applied to a synthetic
test case resembling the Texas power grid.

6.2.1 Texas Synthetic Grid Model

In principle, several states in the southeast of the U.S. are affected by hurricanes.
While the electrical grids in most of these states are part of the so-called Eastern
Interconnection, the Texas Interconnection which covers most of the Texas
state area is practically isolated [75]. It is therefore an ideal test case for
investigating the impact of hurricanes on the power grid infrastructure without
the necessity to model a large power system of continental scale.

As there is no publicly available data for the Texas Interconnection, we use
a synthetic test case provided by the Texas A&M University in the Electric
Grid Test Case Repository [25]. Despite having a completely synthetic grid
topology, this test case resembles some basic properties of the real power system
such as the general distribution of generation and demand over the state area.
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Figure 6.1: Storm tracks of tropical cyclones that passed over Texas. The
tracks depict the position of the eye of the respective storm. The data is
provided by the International Best Track Archive for Climate Stewardship
(IBTrACS) [67, 66]. The legend lists the respective year, the official storm,
and the category at landfall. (Here, ”TS” stands for tropical cyclone.) The
depicted grid is the Texas synthetic grid model described in Section 6.2.1.

In particular, the spatial load distribution is generated from U.S. census data
[24].

The test case contains 2000 buses in 1250 substations. Each substation
may contain several buses at different voltage levels which are connected by
transformers. The test case contains 771 transformers and 2345 transmission
lines at the voltage levels 115 kV, 161 kV, 230 kV and 500 kV. The topology
of the synthetic grid is depicted in Figure 6.2.

6.2.2 Hurricane Wind Field Model

Besides latitude and longitude coordinates, the International Best Track Archive
for Climate Stewardship provides data on meteorological quantities of historical
hurricanes such as sustained wind speeds and minimum pressure with a time
resolution of 6 h. Given these data sets, it is possible to model the wind field by
using a hurricane pressure-wind model. For this we use the software package
CLIMADA [17] that utilizes the model introduced in [57]. Here, the generated
wind field is the sum of a rotationally symmetric wind field and a translational
wind field that accounts for the movement of the tropical cyclone. In the
simulations, we use a spatial resolution of 0.1◦ in longitude and latitude and a
temporal resolution of τ = 5min.

Figure 6.3 depicts an example frame of the calculated wind field for Hurri-
cane Harvey. It can be seen that the wind field can potentially cover a large
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Figure 6.2: 2000-bus synthetic grid on the footprint of Texas. The data set is
available at [25].

part of the synthetic grid, albeit the wind speeds are much stronger around the
cyclone center. The time of the simulations depends on the specific trajectory
and translational speed of the respective hurricane. For hurricane Ike the time
span is only 62 h whereas the time span for Hurricane Harvey is over 188 h.
With the given time resolution this results in a number of several hundreds up
to a few thousand frames for the wind field.

6.2.3 Probabilistic Line Fragility Model

The transmission infrastructure is typically the most critical part of the power
system during a hurricane scenario. Overhead transmission lines are carried by
transmission towers and thereby divided into a large number of segments. We
assume that each of those segments has an equal length of l ≈ 161m which
corresponds to the average distance between two transmission towers in Texas
[139]. Further, we assume that the transmission lines connect the buses in the
shortest possible way, i.e. along the geodesic line. With this we can assign a
spatial position to each line segment and determine the wind speed that it is
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Figure 6.3: Modeled wind field of hurricane Harvey at 6:30 UTC on August
26, 2017 on top of the Texas synthetic grid. The storm track is taken from the
IBTrACS data archive [67, 66] and depicted by the dashed line. The wind field
at the respective time is modeled with the CLIMADA software package [17] and
depicted as a contour plot.

exposed to from the wind field model.
The wind force acting on the wire of a transmission line segment k scales

with the square of the wind speed Fk(v) ∝ v2 [143]. Motivated by a similar
approach introduced in [141] we model the probability that a line segment k
fails in the time interval [t, t+ τ) as

pk(vt) = min

(︃
τrbrk

Fk(vt)

F brk
, 1

)︃
.

Here, F brk is a reference breaking force and rbrk is a failure rate that is used to
calibrate the fragility model to recorded failure data. Unfortunately, there is
no publicly available database for the number of destroyed transmission lines.
We therefore use information on the number of customers without electricity
supply from official reports to estimate the total power outage in terms of the
final unsupplied demand in the system. Comparing the simulation results to
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this data, we can narrow down the parameter value to the range

1× 10−4 h−1 < rbrk < 5× 10−3 h−1 ,

for an arbitrarily chosen reference breaking force F brk = 152.13 kN [126]. In
the simulations, we set the failure rate to 2× 10−3 h−1 which yields reasonable
results.

6.2.4 DC Power Flow Model

In Section 2.1.5 we introduced the AC power flow model. In our attempts to
use this as part of our cascading failure algorithm, it turned out that the AC
power flow solver tends to run into numerical convergence issues [126]. The
main reason for this is that in a severely damaged grid the reactive power
balance is no longer guaranteed. In contrast to active power that can be
balanced globally, reactive power has to be balanced locally, because of high
reactive power losses in the line susceptances. When the reactive power becomes
unbalanced this corresponds to a bifurcation where the stable operation point
vanishes and a so-called voltage collapse occurs [39]. In real power grids, it
is attempted to prevent such under-voltage situations by shedding loads to
regain reactive power balance. Eventually, a more detailed model for voltage
collapses, load shedding or even both are needed to circumvent convergence
issues in a cascading failure model [92].

Instead, we make use of a simplified model, the DC power flow model,
which is based on the following additional assumptions:

1. Ohmic losses are neglected, i.e. Gij = 0 for all branches.

2. The voltage profile is flat, i.e. |Vi| = 1pu at all buses.

3. Voltage angle differences are small, i.e. sin(θij) ≈ θij for all branches.

4. Reactive power equations are neglected.

Applying these assumptions to the AC power flow equations yields

Pi =
∑︂
j

Bij(θi − θj) . (6.1)

Since losses are neglected, a slack node is no longer necessary. Further, neglect-
ing reactive power and assuming a fixed voltage magnitude leaves the voltage
angle θ to be the only free variable at all buses. The DC power flow equations
are solved using PowerModels.jl [36] and the IPOPT solver [137]. For more
details on the software package see Section A.3 in the appendix.
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6.2.5 Line Overload Model

In the DC power flow model, the flow on transmission lines and transformers
is given by

Pij = Bij(θi − θj) .

When the power flow on a branch becomes very large, it will heat up through
the Ohmic losses. In real power grids, the power flow on a branch is therefore
limited to avoid irreversible damage to the transmission infrastructure. In
practice, this is implemented by using circuit breakers that automatically
disconnected a branch once its limit is exceeded.

The synthetic test case of Texas includes such limits Cij for all transmission
lines and transformers. In the simulation algorithm, an overload failure is
implemented by deactivating a branch if

Pij > Cij ,

at any time step. Overload line failures cause a relocation of power flow in the
grid which eventually may lead to a cascade of line failures [38, 101, 112].

6.2.6 Active Power Balance Control Model

A cascade of line failures can cause a system split, i.e. a formation of two or
more islands that are disconnected from each other1. In these islands, there
will typically be an imbalance in active power. The mismatch in each island i
can be calculated by

∆P [i] =
∑︂
j∈C[i]

G

Pj +
∑︂
j∈C[i]

L

Pj ,

where C[i]
G and C[i]

L are the sets of generators and loads in the island. The
over- or undersupply of loads leads to either the acceleration or deceleration
of generators. When the imbalance in the islands is small enough to be offset
by the automatic control systems, they will eventually settle into a new over-
or under-frequency equilibrium state. How much a generator is contributing
to the primary control reserve depends on the parameter of its droop speed
control.

Since there are no dynamic control parameters given for the Texas synthetic
test case we assume that they contribute homogenously to the primary reserve.
We can then incorporate the control power into the model by changing the
dispatch of all generators as

Pj → Pj −
∆P [i]

|C[i]
G |

.

1This includes the special case that only a single load or generator is disconnected from
the rest of the grid.
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However, the adjustment of each generator is limited by their minimum and
maximum power capacity. Taking these into account, we iteratively only adjust
those generators that have not yet reached their limit.

The case that the power imbalance in an island is larger than the total
remaining capacity of all generators is treated as follows:

1. When there is an overproduction even for all generators being set to their
minimum capacity, we assume that the island is blacked out completely
and consequently all buses and branches are deactivated.

2. When there is an underproduction even for all generators being set to
their maximum capacity, we assume a uniform load shedding until the
balance is restored. This is done by iteratively adjusting the load demand,
similar to the adjustment of the generator dispatches.

6.2.7 Connecting the Sub-Models

The models introduced in the previous sections are connected to a complete
model of wind-induced cascading failures. Here, we assume a time scale
separation: The time resolution of the wind field model is τ = 5min whereas
cascades of line failures typically happen on the scale of a few seconds. For
each wind field frame we therefore simulate cascading failures as long as it
takes to reach a new stable grid state before going to the next wind frame. A
flow chart of the full model is depicted in Figure 6.4.

Finally, it should be mentioned that since the line fragility model is proba-
bilistic, the full model is as well. This means that it can be used to perform
Monte Carlo simulations to estimate probability distributions, e.g. for the total
power outage or the number of disconnected and destroyed lines. In the next
section it will be shown that even for a very limited number of hurricane tracks,
the Monte Carlo simulations yield a large variety of very different scenarios,
that facilitate general insights on the resilience of the system.

6.3 Monte Carlo Simulation Results

In this section we will focus on the simulation results for only two historical
hurricane tracks, Harvey and Ike, which tend to cause the largest outages in
the grid. A detailed analysis of those scenarios can be found in [126].

For every storm track we perform Ns = 104 simulation runs. As previously
mentioned, empirical data on the impact of hurricanes on the electricity grid
is typically provided in terms of the number of unsupplied households which
can be roughly converted to the total amount of unsupplied demand using
U.S. census data [126]. Based on this approach, we quantify the outage size
in the simulations by the total amount of unsupplied load at the end of the
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Figure 6.4: Flow Chart for the Hurricane-Induced Cascading Failure Model.

simulation run
P out =

∑︂
k∈CL

[Pk(tstart)− Pk(tend)] .

Additionally to this measure on the overall outage, we also calculate the outage
probability of each grid element (buses and branches) to analyse which parts
of the system are particularly prone to damage or failure

pe = p (outage of e) .

The expected number of outages of an element e in Ns simulation runs is
E{Nout

e } = pe ·Ns. For a large number of simulation runs (Ns = 104), the grid
element outage probability can thus be estimated as pe ≈ Nout

e /Ns.
We are interested in identifying those grid elements that are particularly

vulnerable and tend to fail even in low-impact scenarios as well as grid element
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outages that correlate with the occurrence of large-scale outages. For this
purpose, we also calculate the conditional probabilities of element outages,
given that the total amount of unsupplied load lies in a certain interval I ⊂ R+

pe,I = p
(︁
outage of e | P out ∈ I

)︁
.

Figure 6.5 and 6.6 depict the Monte Carlo simulation results for hurricane
Harvey and hurricane Ike. The violin plots depict the probability distribution
for the total outage P out, whereas branches and buses in the grid plots are
colored according to their conditional outage probability for both small and
large outage events. It can clearly be seen, that the eastern parts of the grid
over which the hurricanes directly pass tend to be highly affected. However,
especially for the Harvey scenario we also see that cascading failures can spread
through the entire grid and lead to significant outage probabilities, e.g. in the
most western part.

One remarkable observation is that for both hurricanes the probability
distribution of the total amount of unsupplied load P out exposes a bi-modal
shape. Comparing the conditional outage probabilities of the grid elements
for small and large outage events, it can be seen that the major difference is
whether the grid area around the city of Houston is still intact or completely
blacked out. Similar results have been observed for simulations of the hurricanes
Claudette, Hanna, Erin, and Laura [126].

The total amount of load in the affected region around Houston is 17GW
and corresponds to the major share of unsupplied load for most scenarios. In
the subsequent section, we will show that the outage of this region is caused
by a cascade of failures that can be triggered by the failure or damage of a
few particularly critical lines. The outage risk can be significantly reduced by
protecting those very lines from wind damage.

6.4 Improving the Resilience of the Texas Grid

In principle, there are at least two strategies to improve resilience against
hurricane-induced cascades: One approach would be to increase the capacity
of lines to contain the spreading of cascading failures. In practice, this could
for example be implemented by adding parallel cables to existing branches.
However, in the simulations it becomes apparent that a large number of
lines are involved in different cascading scenarios and therefore this strategy
does not seem to be very targeted. The second approach would be to better
protect individual lines from wind damage, e.g. by improving the stability
of transmission towers or by replacing an overhead transmission line with
an underground cable. Apart from the fact, that the length of underground
cables is generally limited to lengths below 20 km [5], it is certainly a quite
cost-intensive measure. Nevertheless, this could be an appropriate strategy as
we find that only a small number of lines, primarily located in the Houston
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area, tend to trigger large-scale cascading failures. In the previous section
it was shown that the difference between small and large outage scenarios is
primarily determined by whether the Houston area is blacked out or not. As
previously mentioned, this area comprises a total load demand of about 17GW.
Any cascade that causes a complete blackout of this area would therefore result
in a change of load supply ∆P out of at least 15GW, which we choose as an
arbitrary threshold for large cascade events.

We define the number of times that in a simulation of hurricane h the
exclusive destruction of the line ij causes a cascade that changes the load
supply as ∆P out > 15GW as N15GW

ij (h). With this, we can calculate the
probability of such a single line induced large cascade event by

p15GW
ij (h) ≈

N15GW
ij (h)

Ns
.

We define a line priority index by averaging this probability over all hurricane
scenarios depicted in Figure 6.1 to obtain a measure that is as independent as
possible of a specific hurricane track

κij =
1

|H|
∑︂
h∈H

p15GW
ij (h) .

In Figure 6.7 it can be seen that 19 of the 20 lines with the highest priority
are located within the Houston area. A wind-induced destruction of any of
those lines has a high probability to trigger a cascading failure that leads to
a complete outage of the Houston area which contains about 17GW of load
demand.

In Figure 6.8 it is shown that for hurricane Harvey the probability of
single large cascades has decreased to almost zero, while for hurricane Ike it is
significantly reduced. This also affects the probability distribution of the final
amount of unsupplied load which reveals a significant shift towards scenarios
with P out < 10GW. Thus, the strategy of protecting crucial lines seems to be
remarkably effective.

6.5 Outlook: Model Improvement & Economic Anal-
ysis

In Section 6.2.4 I already indicated that the cascading failure model could
be further improved by using an AC power flow model including reactive
power flows and more detailed models of control schemes. This could include
modeling phenomena like voltage collapses or under-voltage load shedding.
Such an approach would certainly be necessary to obtain quantitatively more
realistic results on the outage sizes. Another aspect of our model that could be
improved is related to the power dispatch in the grid. In our simulations, we
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always used the same demand distribution and the same generator dispatches
that come with the synthetic test case. In reality, the demand distribution can
drastically vary at different times of the day and between different seasons.
The dispatch is regulated by the electricity market and may depend on current
fuel prices and weather conditions. Including a variation of load distributions
and generator dispatches in the Monte Carlo simulations would yield more
robust results on the identification of weak points in the grid.

Besides these possible improvements to the model, our Monte Carlo-based
approach opens the opportunity for a more detailed economic analysis for
identifying the most suitable and cost-efficient strategies to enhance resilience
in the grid. In the previous section, it was shown that protecting a small
number of transmission lines can already significantly decrease the risk of large-
scale outages. The most effective method of implementing this would be to
put the cables underground which is, however, very cost-intensive. In principle,
there is a large variety of alternative measures to prevent wind damage and
the spreading of cascading failures, e.g. improving the stability of transmission
towers or increasing the flow capacity of certain lines by adding extra cables. An
adjustment of the synthetic grid model and the line fragility model according to
these measures allows comparing the benefit of different investment strategies
in the Monte Carlo simulations and could help to identify which measures give
the best trade-off between investment costs and enhancement of grid resilience.
Such an analysis of optimal investment strategies has already been conducted
in the context of earthquake-related power system outages [90, 72].
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Figure 6.5: Outage probability of grid components for Hurricane Harvey.
The violin plots depict the probability distribution for the total outage P out.
The upper plot shows the component outage probabilities for a total outage
2GW < P out < 20GW whereas the lower plot shows the component outage
probabilities for a total outage 20GW < P out < 38GW.
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Figure 6.6: Outage probability of grid components for Hurricane Ike. The violin
plots depict the probability distribution for the total outage P out. The upper
plot shows the component outage probabilities for a total outage P out < 17GW
whereas the lower plot shows the component outage probabilities for a total
outage 17GW < P out < 28GW.
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Figure 6.7: 20 most critical lines in terms of the priority index. The majority
of those lines (colored in orange) lie in the Houston grid area.

Figure 6.8: Left: Probability distributions of the total power outage P out. The
distribution for the default grid is depicted in grey, whereas the distribution of
the improved grid (with the 20 most vulnerable lines being protected from wind
damage) is depicted in orange. Right: Corresponding probability densities of
the cascade sizes in terms of the induced power outage ∆P out.



Chapter 7

Summary & Discussion

In the introduction, I formulated three challenges for maintaining the stability
and resilience of future power grids:

1. Wind and solar power production are fluctuating even on the time scale
of seconds. Within large wind parks or a solar fields, these fluctuations
can be highly correlated and may potentially add up to large fluctuations
that are directly fed into the grid.

2. Synchronous generators will get replaced by a very large number of
inverter-interfaced generation units, which will at least be partially
equipped with a grid-forming control. Due to the lack of a univer-
sal model for the large variety of proposed control schemes, it is difficult
to make general statements about the collective dynamics in such inverter-
dominated grids.

3. As the climate crisis progresses, extreme weather events are becoming
more severe and more frequent. In some regions, this may increase the
risk of large scale power outages by either imposing conditions where
the transmission system is close to its capacity limits or even by a direct
damage of certain grid components.

I will now give a brief summary of the results of this thesis and discuss the
contributions for addressing the three challenges.

7.1 Renewable Power Fluctuations

In order to analyze the impact of short-term renewable fluctuations, I derived
a linear theory for stochastic perturbations of dynamical systems on network
structures. It is shown how the network response can be decomposed into the
eigenmodes of the system. The susceptibility to external perturbations and
the response strength of the network nodes is given by a superposition of left

93
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and right Jacobian eigenvectors respectively. The contribution of each mode to
the system response is determined by the overlap of the power spectral density
of the perturbation with the eigenfrequencies of the system. For systems with
homogenous parameters, the Jacobian eigenvectors can be directly related to
the eigenvectors of the Laplacian and thereby to the network structure. While
this is typically not the case in real-world systems, the theoretical analysis
of this special case gave valuable insights and helped to understand observed
phenomena in more complex and realistic systems.

Using the linear response theory and simulations in an AC microgrid, I
have shown that for the typical parameter regime of realistic power grids, the
response of the resonant eigenmodes is suppressed as the power spectral density
of renewable fluctuations is comparatively weak at their eigenfrequencies. As a
result, the network response is dominated by a single overdamped eigenmode
with a homogeneous response at all network nodes. This bulk mode corresponds
to a quasi-static variations of the synchronous grid frequency that are caused by
a global imbalance between production and demand in the grid. In sufficiently
large grids with wind and solar production at different places such variations
can be expected to balance out as wind and solar fluctuations are spatially
uncorrelated on the respective timescale over longer distances. However, in
smaller grids (e.g. islanded microgrids) with fewer generating units on a smaller
spatial scale and no connection to a higher grid level these fluctuations may
play a significant role. Moreover, these grids are typically on the MV level
and thus the line losses are higher. This is important to consider, as I have
shown that line losses cause an amplification of the fluctuations in the opposite
direction of the power flow.

Related Publication:

� A. Plietzsch, S. Auer, J. Kurths, and F. Hellmann. Linear response theory
for renewable fluctuations in power grids with transmission losses. arXiv
preprint arXiv:1903.09585, 2021. (In Review at Chaos: An Interdisci-
plinary Journal of Nonlinear Science)

7.2 Modeling of Grid-Forming Inverters

In Chapter 5, I presented laboratory measurements of grid-forming and grid-
following inverters in a small microgrid setup. With a detailed knowledge of
the control schemes and parameter settings as well as an appropriate software
package, it is was possible yet cumbersome to reproduce the measurements
with simulations. However, in reality the circumstance are often less ideal
than in a laboratory setup. Within the next couple of years, a potentially
large number of grid-forming components will be implemented into the power
system. It is likely that inverters with very different control laws will be part
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of the same grid and interact with each other dynamically. Additionally, the
parametrization or even the entire control scheme of individual inverters might
be unknown, which makes it very hard to analyze the stability of such systems.
Being aware of these potential problems has given the impetus to develop a
normal form model for grid-forming components. This model is general as it is
only based on fundamental principles such as the inherent symmetry of the
operating state. In this thesis, it was shown that this model is not only capable
of approximating standard models for grid-forming controllers but can even
be used for an entirely data-driven modeling approach without any detailed
knowledge about the underlying control laws. The normal form opens up new
opportunities to study the stability of inverter-based grids from a more general
and abstract point of view. This is complementary to the typical approach in
the control system and power system engineering literature, that focus on a
very detailed analysis of a particular control scheme.

Related Publications:

� A. Plietzsch, R. Kogler, S. Auer, J. Merino, A. Gil-de Muro, J. Liße,
C. Vogel, and F. Hellmann. Powerdynamics.jl—an experimentally val-
idated open-source package for the dynamical analysis of power grids.
SoftwareX, 17:100861, 2022

� R. Kogler, A. Plietzsch, P. Schultz, and F. Hellmann. Normal form for
grid-forming power grid actors. PRX Energy, 1(1):013008, 2022

� A. Büttner, H. Würfel, A. Plietzsch, M. Lindner, and F. Hellmann. An
open source software stack for tuning the dynamical behavior of complex
power systems. In Proceedings of OSMSES 2022. IEEE, 2022

7.3 Extreme Weather Events & Grid Resilience

In Chapter 6, I introduced a model for simulation large scale power outages
that are caused by hurricane damages of the transmission infrastructure. This
turned out to be a good study case for the impact of extreme weather events on
electricity infrastructure as both historical hurricane data as well as a realistic
grid model of the corresponding region are publicly available. Hurricane
wind fields is modeled using a tropical cyclone model and the spreading of
outages in the grid by a DC power flow based cascading failure algorithm.
The interconnection between the meteorological and the power grid model
are wind-induced transmission line damages that are modeled stochastically.
Using Monte Carlo simulations, we estimated the outage probability of each
element in the grid. We were able to identify several critical lines in the
Houston area of the synthetic test case. Moreover, we could show that a better
protection of a few of these lines can significantly increase the resilience of
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the grid. These strong results suggest that the general approach of combining
meteorological models and power grid models can help to identify vulnerabilities
in the infrastructure but may even be used to analyze the feasibility of different
options to strengthen the systems resilience. As the electricity infrastructure
in different parts of the world is facing very distinct meteorological conditions,
it is certainly necessary to adjust the model to the conditions of a respective
region.

Related Publications:

� J. M. Stürmer, A. Plietzsch, and M. Anvari. The risk of cascading failures
in electrical grids triggered by extreme weather events. In Proceedings of
ENERGY 2021, pages 19–23. IARIA, 2021

� J. M. Stürmer, A. Plietzsch, M. Anvari, T. Vogt, C. Otto, and F. Hellmann.
Hurricane-induced failures of critical transmission lines lead to huge power
outages in texas, 2022. (In Preparation)



Appendix A

Simulation Software

I will give a brief overview of the software packages that have been used
throughout this thesis. Concerning the packages NetworkDynamics.jl and
PowerDynamics.jl, I also contributed to the software development, documen-
tation, maintaining and publication (see [74, 100]).

A.1 NetworkDynamics.jl

NetworkDynamics.jl is a software package for simulating complex dynamical
systems on network structures. The package is developed collaboratively by the
Complex Infrastructure Networks group at the Potsdam Institute for Climate
Impact Research (PIK). The source code and documentation are available on
GitHub1 under an open source license. A detailed description of the current
functionalities accompanied by many examples and code snippets has been
published in [74].

NetworkDynamics.jl is written in Julia, a rather young programming
language that is specifically designed for scientific computing purposes [23].
Julia is a dynamically typed language using a just-in-time compiler. Its use is
therefore convenient as a scripting language like Python or Matlab, while at
the same time the code can be optimized to have a similar performance as C or
Fortran. The Julia package DifferentialEquations.jl, which comes with
state-of-the-art solvers for Stochastic Differential Equations (SDEs), Delay
Differential Equations (DDEs), Differential Algebraic Equations (DAEs), as
well as functionalities for handling discrete events is arguably one of the best
differential equation solver suites available [105]. Moreover, it is compatible
with a large variety of Julia’s machine learning packages.

Implementing performant simulations of large complex dynamical systems
that eventually include delays, stochasticity or algebraic constraints can be a
quite difficult task. The aim of NetworkDynamics.jl is to provide a convenient

1https://github.com/PIK-ICoNe/NetworkDynamics.jl
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interface for defining local dynamics of individual nodes and edges on a high level
of abstraction. It uses custom-build graph data structures in order to construct
an optimized, allocation-free Julia function for the whole network system which
can then efficiently be solved using DifferentialEquations.jl. In benchmark
tests with Kuramoto oscillator networks of different sizes, NetworkDynamics.jl
has been shown to outperform similar software packages such as the Python-
based JiTCODE and even Fortran-based implementations [74].

I have used the package for simulation renewable fluctuations in the IEEE
RTS-96 test case in Chapter 4. Further, NetworkDynamics.jl is also the basis
of the PowerDynamics.jl package.

A.2 PowerDynamics.jl

PowerDynamics.jl is a software package for dynamical simulations of power
grids. The package is jointly developed by the Complex Infrastructure Networks
group at PIK and the company Elena International GmbH2. The source code
and documentation available on GitHub3 under an open source license.

PowerDynamics.jl is built on top of NetworkDynamics.jl with complex
current and voltage being predefined variables. The package comes with a
library of various component models for generators, loads, inverters, lines and
transformers as well as different fault scenarios. Further, it provides utility
functions such as calculating the static power flow or steady states of a system
as well as a plotting recipe. Some of the models and fault scenarios have been
experimentally validated in a microgrid laboratory. An exemplary comparison
of measurements and simulations has been presented in Section 5.2. More
details on these measurements can be found in the technical report [136]. A
detailed description of the software architecture and all functionalities as well as
an example simulation in the IEEE 14-bus model has been published in [100].

PowerDynamics.jl has shown to be much more performant than commer-
cial competitors such as PowerFactory or Simulink [73]. Once the system
is compiled, repeated simulations of the same setup run extremely fast. The
package is therefore particularly suited for sampling-based methods [82, 52].

In its most recent release, PowerDynamics.jl comes with the new utility to
define blocks of symbolic equations with certain input and output variables and
to connect these blocks with each other [33]. Using the ModelingToolkit.jl
package [77], these block-based system can then be converted into component
functions that can be simulated with NetworkDynamics.jl. This feature is
extremely useful for building models of very detailed inverter controls from
basic controllers and filters in order to evaluate the performance and stability
of certain control schemes in a dynamic grid simulation.

2https://www.elena-international.de/
3https://github.com/JuliaEnergy/PowerDynamics.jl

https://www.elena-international.de/
https://github.com/JuliaEnergy/PowerDynamics.jl
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A.3 PowerModels.jl

PowerModels.jl is a software package for steady state power network opti-
mization. The package is developed by the Advanced Network Science Initiative
at the Los Alamos National Laboratory. Source code and documentation are
available on GitHub4. A detailed description of the software architecture as
well as code examples for basic simulations has been published in [36].

PowerModels.jl is a based on JuMP, a domain-specific modeling language
for mathematical optimization embedded in the Julia language. The package is
designed for solving different algebraic and optimization problems including AC
and DC power flow equations, optimal power flow problems and transmission
network extension planning. It provides utilities for parsing data files in
industry-standard data formats (Matpower and PSS/E) as well as for modifying
the network data which is structured in dictionary that is designed to be mostly
consistent with the file format of its commercial competitor Matpower.

The network data dictionary and the DC power flow solver have been used
for the cascading failure simulations presented in Chapter 6. Further, the AC
power flow solver is deployed by PowerDynamics.jl for calculating the static
steady-state solutions.

4https://github.com/lanl-ansi/PowerModels.jl

https://github.com/lanl-ansi/PowerModels.jl
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