118 research outputs found
Proposed diagnostic criteria for classical CMML, CMML variants and pre-CMML conditions
Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk to transform into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diagnostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to delineate between normal, pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology
Recommended from our members
OCT-based automated vitreous inflammation score: a promising biomarker in dexamethasone implant treated uveitis patients
Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis: Fundamentals Of Care for UveitiS (FOCUS) Initiative
Topic: An international, expert-led consensus initiative to develop systematic, evidence-based recommendations for the treatment of noninfectious uveitis in the era of biologics. Clinical Relevance: The availability of biologic agents for the treatment of human eye disease has altered practice patterns for the management of noninfectious uveitis. Current guidelines are insufficient to assure optimal use of noncorticosteroid systemic immunomodulatory agents. Methods: An international expert steering committee comprising 9 uveitis specialists (including both ophthalmologists and rheumatologists) identified clinical questions and, together with 6 bibliographic fellows trained in uveitis, conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol systematic review of the literature (English language studies from January 1996 through June 2016; Medline [OVID], the Central Cochrane library, EMBASE, CINAHL, SCOPUS, BIOSIS, and Web of Science). Publications included randomized controlled trials, prospective and retrospective studies with sufficient follow-up, case series with 15 cases or more, peer-reviewed articles, and hand-searched conference abstracts from key conferences. The proposed statements were circulated among 130 international uveitis experts for review. A total of 44 globally representative group members met in late 2016 to refine these guidelines using a modified Delphi technique and assigned Oxford levels of evidence. Results: In total, 10 questions were addressed resulting in 21 evidence-based guidance statements covering the following topics: when to start noncorticosteroid immunomodulatory therapy, including both biologic and nonbiologic agents; what data to collect before treatment; when to modify or withdraw treatment; how to select agents based on individual efficacy and safety profiles; and evidence in specific uveitic conditions. Shared decision-making, communication among providers and safety monitoring also were addressed as part of the recommendations. Pharmacoeconomic considerations were not addressed. Conclusions: Consensus guidelines were developed based on published literature, expert opinion, and practical experience to bridge the gap between clinical needs and medical evidence to support the treatment of patients with noninfectious uveitis with noncorticosteroid immunomodulatory agents
The role of complement in ocular pathology
Functionally active complement system and complement regulatory proteins are present in the normal human and rodent eye. Complement activation and its regulation by ocular complement regulatory proteins contribute to the pathology of various ocular diseases including keratitis, uveitis and age-related macular degeneration. Furthermore, a strong relationship between age-related macular degeneration and polymorphism in the genes of certain complement components/complement regulatory proteins is now well established. Recombinant forms of the naturally occurring complement regulatory proteins have been exploited in the animal models for treatment of these ocular diseases. It is hoped that in the future recombinant complement regulatory proteins will be used as novel therapeutic agents in the clinic for the treatment of keratitis, uveitis, and age-related macular degeneration
Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal endothelial cells
The aim of this study was to optimize non-viral gene transfer conditions and investigate the effect of fibroblast growth factor-1 (FGF-1) gene transfer on human corneal endothelial cell (HCEC) proliferation. Five non-viral vectors (Lipofectin™, DMRIE-C™, DAC-30, Effectene™, FuGene™6) were used to transfect HCEC with plasmids coding for enhanced green fluorescent protein (EGFP) and FGF-1. Transfection efficiency and toxicity (n=6) were quantified and optimized using the EGFP construct by FACS-analysis. Using optimal conditions HCEC were transfected with the FGF-1 plasmid and cell proliferation as well as expression of FGF-1 were determined at days 4 and 7 by counting and western blotting, respectively. Lipofectin (17±2·02%) transfected HCEC more successfully than DMRIE-C (11±1·46%), Effectene (9±0·62%), FuGene (9±0·93%) and DAC-30 (7±0·59%). Toxicity of the lipids ranged from 2 to 4%. Optimal HCEC proliferation was achieved with DAC-30/FGF-1 (P<0·05), whereas all other vectors did not result in significantly increased cell proliferation. However, all of the transfected cells produced FGF-1 in different amounts as indicated by western blotting. Efficient and almost non-toxic transfer of the FGF-1 gene into HCEC can be successfully achieved by lipid-based techniques. Using optimal conditions significantly increased cell proliferation was independent on gene transfer efficiency. This may indicate that even a low transfection rate is sufficient to produce a concentration of FGF-1 that will have a stimulatory effect on HCECs
- …