27 research outputs found

    Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1

    Get PDF
    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na+) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na+ exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored using a GAL4-GFP enhancer trap rice line to drive expression of AtHKT1;1 specifically in the root cortex. Compared with the background GAL4-GFP line, the rice plants expressing AtHKT1;1 had a higher fresh weight under salinity stress, which was related to a lower concentration of Na+ in the shoots. The root-to-shoot transport of 22Na+ was also decreased and was correlated with an upregulation of OsHKT1;5, the native transporter responsible for Na+ retrieval from the transpiration stream. Interestingly, in the transgenic Arabidopsis plants overexpressing AtHKT1;1 in the cortex and epidermis, the native AtHKT1;1 gene responsible for Na+ retrieval from the transpiration stream, was also upregulated. Extra Na+ retrieved from the xylem was stored in the outer root cells and was correlated with a significant increase in expression of the vacuolar pyrophosphatases (in Arabidopsis and rice) the activity of which would be necessary to move the additional stored Na+ into the vacuoles of these cells. This work presents an important step in the development of abiotic stress tolerance in crop plants via targeted changes in mineral transport

    Sensor-based phenotyping of above-ground plant-pathogen interactions

    Get PDF
    Plant pathogens cause yield losses in crops worldwide. Breeding for improved disease resistance and management by precision agriculture are two approaches to limit such yield losses. Both rely on detecting and quantifying signs and symptoms of plant disease. To achieve this, the field of plant phenotyping makes use of non-invasive sensor technology. Compared to invasive methods, this can offer improved throughput and allow for repeated measurements on living plants. Abiotic stress responses and yield components have been successfully measured with phenotyping technologies, whereas phenotyping methods for biotic stresses are less developed, despite the relevance of plant disease in crop production. The interactions between plants and pathogens can lead to a variety of signs (when the pathogen itself can be detected) and diverse symptoms (detectable responses of the plant). Here, we review the strengths and weaknesses of a broad range of sensor technologies that are being used for sensing of signs and symptoms on plant shoots, including monochrome, RGB, hyperspectral, fluorescence, chlorophyll fluorescence and thermal sensors, as well as Raman spectroscopy, X-ray computed tomography, and optical coherence tomography. We argue that choosing and combining appropriate sensors for each plant-pathosystem and measuring with sufficient spatial resolution can enable specific and accurate measurements of above-ground signs and symptoms of plant disease

    The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle

    Get PDF
    The definitive version is available at www.newphytologist.comAn understanding of nitrate (NO3-) uptake throughout the lifecycle of plants, and how this process responds to nitrogen (N) availability, is an important step towards the development of plants with improved nitrogen use efficiency (NUE). NO3- uptake capacity and transcript levels of putative high- and low-affinity NO3- transporters (NRTs) were profiled across the lifecycle of dwarf maize (Zea mays) plants grown at reduced and adequate NO3-. Plants showed major changes in high-affinity NO3- uptake capacity across the lifecycle, which varied with changing relative growth rates of roots and shoots. Transcript abundances of putative high-affinity NRTs (predominantly ZmNRT2.1 and ZmNRT2.2) were correlated with two distinct peaks in high-affinity root NO3- uptake capacity and also N availability. The reduction in NO3- supply during the lifecycle led to a dramatic increase in NO3- uptake capacity, which preceded changes in transcript levels of NRTs, suggesting a model with short-term post-translational regulation and longer term transcriptional regulation of NO3- uptake capacity. These observations offer new insight into the control of NO3- uptake by both plant developmental processes and N availability, and identify key control points that may be targeted by future plant improvement programmes to enhance N uptake relative to availability and/or demand.Trevor Garnett, Vanessa Conn, Darren Plett, Simon Conn, Juergen Zanghellini, Nenah Mackenzie, Akiko Enju, Karen Francis, Luke Holtham, Ute Roessner, Berin Boughton, Antony Bacic, Neil Shirley, Antoni Rafalski, Kanwarpal Dhugga, Mark Tester, and Brent N. Kaise

    A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing

    Get PDF
    The HKT family of Na+ and Na+/K+ transporters is implicated in plant salinity tolerance. Amongst these transporters, the cereal HKT1;4 and HKT1;5 are responsible for Na+ exclusion from photosynthetic tissues, a key mechanism for plant salinity tolerance. It has been suggested that Na+ is retrieved from the xylem transpiration stream either in the root or the leaf sheath, protecting the leaf blades from excessive Na+ accumulation. However, direct evidence for this scenario is scarce. Comparative modeling and evaluation of rice (Oryza sativa) HKT-transporters based on the recent crystal structure of the bacterial TrkH K+ transporter allowed to reconcile transcriptomic and physiological data. For OsHKT1;5, both transcript abundance and protein structural features within the selectivity filter could control shoot Na+ accumulation in a range of rice varieties. For OsHKT1;4, alternative splicing of transcript and the anatomical complexity of the sheath needed to be taken into account. Thus, Na+ accumulation in a specific leaf blade seems to be regulated by abundance of a correctly spliced OsHKT1;4 transcript in a corresponding sheath. Overall, allelic variation of leaf blade Na+ accumulation can be explained by a complex interplay of gene transcription, alternative splicing and protein structure.Olivier Cotsaftis, Darren Plett, Neil Shirley, Mark Tester and Maria Hrmov

    Dichotomy in the NRT Gene Families of Dicots and Grass Species

    Get PDF
    A large proportion of the nitrate (NO3−) acquired by plants from soil is actively transported via members of the NRT families of NO3− transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO3− transporters and NO3− transport in grass crop species

    Spatial and temporal alterations of gene expression in rice.

    Get PDF
    Two problems hampering efforts to produce salt-tolerant plants through constitutive expression of transgenes include: 1. Spatial control. Particular cell-types must respond specifically to salt stress to minimise the amount of Na⁺ delivered to the shoot; and, 2. Temporal control. Transgenes are typically expressed in plants at similar levels through time, irrespective of the stress encountered by the plant, which may exacerbate pleiotropic effects and means that, particularly in low-stress conditions, costly and/or detrimental metabolic processes may be active, thus reducing yield. To address these issues, Gateway® destination vector constructs were developed combining the GAL4 UAS (upstream activating sequence) with the ethanol-inducible gene expression system to drive inducible cell-specific expression of Na⁺ transporter transgenes (or to silence salt transporter transgenes inducibly and cell-specifically). Rice (Oryza sativa L. cv. Nipponbare) GAL4-GFP enhancer trap lines (Johnson et al., 2005: Plant J. 41, 779-789) that express GAL4 and GFP specifically in either the root epidermis or xylem parenchyma (and therefore ‘trap’ cell-type specific enhancer elements) were transformed with this GAL4 UAS – ethanol switch construct, thereby allowing both spatial and temporal control of transgenes. In preliminary experiments, the expression system successfully limited the expression of RFP to specific cell-types after induction with ethanol. Other genes expressed using this system include PpENA1, a Na⁺-extruding ATPase from the moss, Physcomitrella patens, and AtHKT1;1, a Na ⁺ transporter from Arabidopsis thaliana. The two enhancer trap rice lines were also transformed with the GAL4 UAS driving stable expression of AtHKT1;1 and PpENA1 specifically in root epidermal or xylem parenchyma cells. Expression of AtHKT1;1 in root epidermal cells reduced Na⁺ accumulation in the shoots, while expression in the root xylem parenchyma appeared to have little effect on shoot Na⁺ accumulation. Using cryo-scanning electron microscopy (SEM) X-ray microanalysis, the outer cells of the roots of the line expressing AtHKT1;1 in the epidermal cells were found to accumulate higher levels of Na⁺ than the parental enhancer trap line. Additionally, this line had decreased unidirectional ²²Na⁺ influx. Similar results were observed for plants expressing AtHKT1;1 driven by the CaMV 35SThesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 200

    The Promise of Hyperspectral Imaging for the Early Detection of Crown Rot in Wheat

    No full text
    Crown rot disease is caused by Fusarium pseudograminearum and is one of the major stubble-soil fungal diseases threatening the cereal industry globally. It causes failure of grain establishment, which brings significant yield loss. Screening crops affected by crown rot is one of the key tools to manage crown rot, because it is necessary to understand disease infection conditions, identify the severity of infection, and discover potential resistant varieties. However, screening crown rot is challenging as there are no clear visible symptoms on leaves at early growth stages. Hyperspectral imaging (HSI) technologies have been successfully used to better understand plant health and disease incidence, including light absorption rate, water and nutrient distribution, and disease classification. This suggests HSI imaging technologies may be used to detect crown rot at early growing stages, however, related studies are limited. This paper briefly describes the symptoms of crown rot disease and traditional screening methods with their limitations. It, then, reviews state-of-art imaging technologies for disease detection, from color imaging to hyperspectral imaging. In particular, this paper highlights the suitability of hyperspectral-based screening methods for crown rot disease. A hypothesis is presented that HSI can detect crown-rot-infected plants before clearly visible symptoms on leaves by sensing the changes of photosynthesis, water, and nutrients contents of plants. In addition, it describes our initial experiment to support the hypothesis and further research directions are described

    Detecting Crown Rot Disease in Wheat in Controlled Environment Conditions Using Digital Color Imaging and Machine Learning

    No full text
    Crown rot is one of the major stubble soil fungal diseases that bring significant yield loss to the cereal industry. The most effective crown rot management approach is removal of infected crop residue from fields and rotation of nonhost crops. However, disease screening is challenging as there are no clear visible symptoms on upper stems and leaves at early growth stages. The current manual screening method requires experts to observe the crown and roots of plants to detect disease, which is time-consuming, subjective, labor-intensive, and costly. As digital color imaging has the advantages of low cost and easy use, it has a high potential to be an economical solution for crown rot detection. In this research, a crown rot disease detection method was developed using a smartphone camera and machine learning technologies. Four common wheat varieties were grown in greenhouse conditions with a controlled environment, and all infected group plants were infected with crown rot without the presence of other plant diseases. We used a smartphone to take digital color images of the lower stems of plants. Using imaging processing techniques and a support vector machine algorithm, we successfully distinguished infected and healthy plants as early as 14 days after disease infection. The results provide a vital first step toward developing a digital color imaging phenotyping platform for crown rot detection to enable the management of crown rot disease effectively. As an easy-access phenotyping method, this method could provide support for researchers to develop an efficiency and economic disease screening method in field conditions

    Root-to-shoot Na<sup>+</sup> transfer control in rice upon salt stress.

    No full text
    <p>(<b>A</b>) Radioactive <sup>22</sup>Na<sup>+</sup> fluxes measurement of root Na<sup>+</sup> uptake (+SEM; n = 8) (uptake: 2 min). (<b>B</b>) Flame photometry measurement of plant total Na<sup>+</sup> concentration (+SEM; n = 5). (<b>C</b>) Flame photometry measurement of tissue Na<sup>+</sup> concentrations (+SEM; n = 5). (<b>D</b>) Radioactive <sup>22</sup>Na<sup>+</sup> fluxes measurement of the shoot-to-plant ratio of Na<sup>+</sup> amount (+SEM; n = 8). (<b>E</b>) Correlation between root OsHKT1;5 expression level measured by qRT-PCR (three biological replicates per line +/− SEM; three technical replicates per biological sample) and shoot Na<sup>+</sup> concentration measured by flame photometry (+/− SEM; n = 5) in salt treated rice lines with either a Leu or a Val residue in position 395 of the OsHKT1;5 gene. The abbreviations Po = Pokkali; NB = Nona Bokra; Ni = Nipponbare; KV = Kallurundai Vellai; Ka = Kalurundai; NSI = NSICRC106; and SAL = SAL208 stand for individual varieties, variously represented through the panels A–E. IR29 and FL478 are full names of rice varieties.</p
    corecore